crude nuclear extract
Recently Published Documents


TOTAL DOCUMENTS

4
(FIVE YEARS 0)

H-INDEX

2
(FIVE YEARS 0)

Author(s):  
Zhong Lian Li ◽  
Kenta Nagahori ◽  
Shinichi Kawata ◽  
Yuki Ogawa ◽  
Hidenobu Miyaso ◽  
...  


2001 ◽  
Vol 21 (21) ◽  
pp. 7495-7508 ◽  
Author(s):  
Dong P. Tran ◽  
Steven J. Kim ◽  
Noh Jin Park ◽  
Tiffany M. Jew ◽  
Harold G. Martinson

ABSTRACT Termination of transcription by RNA polymerase II usually requires the presence of a functional poly(A) site. How the poly(A) site signals its presence to the polymerase is unknown. All models assume that the signal is generated after the poly(A) site has been extruded from the polymerase, but this has never been tested experimentally. It is also widely accepted that a “pause” element in the DNA stops the polymerase and that cleavage at the poly(A) site then signals termination. These ideas also have never been tested. The lack of any direct tests of the poly(A) signaling mechanism reflects a lack of success in reproducing the poly(A) signaling phenomenon in vitro. Here we describe a cell-free transcription elongation assay that faithfully recapitulates poly(A) signaling in a crude nuclear extract. The assay requires the use of citrate, an inhibitor of RNA polymerase II carboxyl-terminal domain phosphorylation. Using this assay we show the following. (i) Wild-type but not mutant poly(A) signals instruct the polymerase to stop transcription on downstream DNA in a manner that parallels true transcription termination in vivo. (ii) Transcription stops without the need of downstream elements in the DNA. (iii)cis-antisense inhibition blocks signal transduction, indicating that the signal to stop transcription is generated following extrusion of the poly(A) site from the polymerase. (iv) Signaling can be uncoupled from processing, demonstrating that signaling does not require cleavage at the poly(A) site.



1987 ◽  
Vol 7 (4) ◽  
pp. 1518-1529 ◽  
Author(s):  
M D Sheets ◽  
P Stephenson ◽  
M P Wickens

Formation of mRNA 3' termini involves cleavage of an mRNA precursor and polyadenylation of the newly formed end. Cleavage of simian virus 40 late pre-mRNA in a crude nuclear extract generated two RNAs, 5' and 3' half-molecules. These RNAs were unmodified and linear. The 5' half-molecule contained sequences upstream but not downstream of the poly(A) site and ended in a 3'-terminal hydroxyl. The 3' half-molecules comprised a family of RNAs, each of which contains only sequences downstream of the poly(A) site, and ends in a 5'-terminal phosphate. These RNAs differed only in the locations of their 5' terminus. The 3' terminus of the 5' half-molecule was the adenosine 10 nucleotides downstream of AAUAAA, at the +1 position. The 5' terminus of the longest 3' half-molecule was at +2. Thus, these two RNAs contain every nucleoside and phosphate of the precursor. The existence of these half-molecules demonstrates that endonucleolytic cleavage occurs near the poly(A) site. 5' half-molecules generated in the presence of EDTA (which blocks polyadenylation, but not cleavage) ended at the adenosine at position +1 of the precursor. When incubated in the extract under suitable conditions, they became polyadenylated. 5' half-molecules formed in 3'-dATP-containing reactions contained a single 3'-deoxyadenosine (cordycepin) residue added onto the +1 adenosine and were poor polyadenylation substrates. We infer that the +1 adenosine of the precursor becomes the first A of the poly(A) tract and provides a 3' hydroxyl group to which poly(A) is added posttranscriptionally.



1987 ◽  
Vol 7 (4) ◽  
pp. 1518-1529
Author(s):  
M D Sheets ◽  
P Stephenson ◽  
M P Wickens

Formation of mRNA 3' termini involves cleavage of an mRNA precursor and polyadenylation of the newly formed end. Cleavage of simian virus 40 late pre-mRNA in a crude nuclear extract generated two RNAs, 5' and 3' half-molecules. These RNAs were unmodified and linear. The 5' half-molecule contained sequences upstream but not downstream of the poly(A) site and ended in a 3'-terminal hydroxyl. The 3' half-molecules comprised a family of RNAs, each of which contains only sequences downstream of the poly(A) site, and ends in a 5'-terminal phosphate. These RNAs differed only in the locations of their 5' terminus. The 3' terminus of the 5' half-molecule was the adenosine 10 nucleotides downstream of AAUAAA, at the +1 position. The 5' terminus of the longest 3' half-molecule was at +2. Thus, these two RNAs contain every nucleoside and phosphate of the precursor. The existence of these half-molecules demonstrates that endonucleolytic cleavage occurs near the poly(A) site. 5' half-molecules generated in the presence of EDTA (which blocks polyadenylation, but not cleavage) ended at the adenosine at position +1 of the precursor. When incubated in the extract under suitable conditions, they became polyadenylated. 5' half-molecules formed in 3'-dATP-containing reactions contained a single 3'-deoxyadenosine (cordycepin) residue added onto the +1 adenosine and were poor polyadenylation substrates. We infer that the +1 adenosine of the precursor becomes the first A of the poly(A) tract and provides a 3' hydroxyl group to which poly(A) is added posttranscriptionally.



Sign in / Sign up

Export Citation Format

Share Document