cleavage and polyadenylation
Recently Published Documents


TOTAL DOCUMENTS

294
(FIVE YEARS 77)

H-INDEX

50
(FIVE YEARS 8)

2021 ◽  
Author(s):  
Pierre Bensidoun ◽  
Taylor Reiter ◽  
Ben Montpetit ◽  
Daniel Zenklusen ◽  
Marlene Oeffinger

To determine which transcripts should reach the cytoplasm for translation, eukaryotic cells have established mechanisms to regulate selective mRNA export through the nuclear pore complex (NPC). The nuclear basket, a substructure of the NPC protruding into the nucleoplasm, is thought to function as a stable platform where mRNA-protein complexes (mRNPs) are rearranged and undergo quality control (QC) prior to export, ensuring that only mature mRNAs reach the cytoplasm. Here, we use proteomic, genetic, live-cell, and single-molecule resolution microscopy approaches in budding yeast to demonstrate that baskets assemble only on a subset of NPCs and that basket formation is dependent on RNA polymerase II (Pol II) transcription and subsequent mRNP processing. Specifically, we observe that the cleavage and polyadenylation machinery, the poly(A)-binding protein Pab1, and pre-mRNA-leakage factor Pml39 are required for basket assembly. We further show that while all nuclear pores can bind Mlp1, baskets assemble only on a subset of nucleoplasmic NPCs and these basket-containing pores associate a distinct protein and RNA interactome. Taken together, our data points towards nuclear pore heterogeneity and an RNA-dependent mechanism for functionalization of nuclear pores in budding yeast through nuclear basket assembly.


2021 ◽  
Author(s):  
Vytaute Boreikaite ◽  
Thomas Elliot ◽  
Jason Chin ◽  
Lori A Passmore

3′-end processing of most human mRNAs is carried out by the cleavage and polyadenylation specificity factor (CPSF; CPF in yeast). Endonucleolytic cleavage of the nascent pre-mRNA defines the 3′-end of the mature transcript, which is important for mRNA localization, translation and stability. Cleavage must therefore be tightly regulated. Here, we reconstitute specific and efficient 3′-endonuclease activity of human CPSF with purified proteins. This requires the seven-subunit CPSF as well as three additional protein factors: cleavage stimulatory factor (CStF), cleavage factor IIm (CFIIm) and, importantly, the multi-domain protein RBBP6. Unlike its yeast homologue Mpe1, which is a stable subunit of CPF, RBBP6 does not copurify with CPSF and is recruited in an RNA-dependent manner. Sequence and mutational analyses suggest that RBBP6 interacts with the WDR33 and CPSF73 subunits of CPSF. Thus, it is likely that the role of RBBP6 is conserved from yeast to human. Overall, our data are consistent with CPSF endonuclease activation and site-specific pre-mRNA cleavage being highly controlled to maintain fidelity in RNA processing.


RNA ◽  
2021 ◽  
pp. rna.078933.121
Author(s):  
Pedro Prudencio ◽  
Rosina Savisaar ◽  
Kenny Rebelo ◽  
Rui Goncalo Martinho ◽  
Maria Carmo-Fonseca

Widespread co-transcriptional splicing has been demonstrated from yeast to human. However, most studies to date addressing the kinetics of splicing relative to transcription used either Saccharomyces cerevisiae or metazoan cultured cell lines. Here, we adapted native elongating transcript sequencing technology (NET-seq) to measure co-transcriptional splicing dynamics during the early developmental stages of Drosophila melanogaster embryos. Our results reveal the position of RNA polymerase II (Pol II) when both canonical and recursive splicing occur. We found heterogeneity in splicing dynamics, with some RNAs spliced immediately after intron transcription, whereas for other transcripts no splicing was observed over the first 100 nucleotides of the downstream exon. Introns that show splicing completion before Pol II has reached the end of the downstream exon are necessarily intron-defined. We studied the splicing dynamics of both nascent pre-mRNAs transcribed in the early embryo, which have few and short introns, as well as pre-mRNAs transcribed later in embryonic development, which contain multiple long introns. As expected, we found a relationship between the proportion of spliced reads and intron size. However, intron definition was observed at all intron sizes. We further observed that genes transcribed in the early embryo tend to be isolated in the genome whereas genes transcribed later are often overlapped by a neighboring convergent gene. In isolated genes, transcription termination occurred soon after the polyadenylation site, while in overlapped genes Pol II persisted associated with the DNA template after cleavage and polyadenylation of the nascent transcript. Taken together, our data unravels novel dynamic features of Pol II transcription and splicing in the developing Drosophila embryo.


2021 ◽  
Author(s):  
Christoph Schmal ◽  
Bert Maier ◽  
Reut Ashwal-Fluss ◽  
Osnat Bartok ◽  
Anna-Marie Finger ◽  
...  

A defining property of circadian clocks is temperature compensation, characterized by the resilience of circadian free-running periods against changes in environmental temperature. As an underlying mechanism, the balance or critical reaction hypothesis have been proposed. While the former supposes a temperature-dependent balancing of reactions with opposite effects on circadian period, the latter assumes an insensitivity of certain critical period determining regulations upon temperature changes. Posttranscriptional regulations such as temperature-sensitive alternative splicing or phosphorylation have been described as underlying reactions. Here, we show that knockdown of cleavage and polyadenylation specificity factor subunit 6 (CPSF6), a key regulator of 3'-end cleavage and polyadenylation, abolishes circadian temperature compensation in U-2 OS cells. We apply a combination of 3'-End-RNA-seq and mass spectrometry-based proteomics to globally quantify changes in 3' UTR length as well as gene and protein expression between wild type and CPSF6 knock-down cells and their dependency on temperature. Analyzing differential responses upon temperature changes in wild type and CPSF6 knockdown cells reveals candidate genes underlying circadian temperature compensation. We identify that eukaryotic translation initiation factor 2 subunit 1 (EIF2S1) is among these candidates. EIF2S1 is known as a master regulator of cellular stress responses that additionally regulates circadian rhythms. We show that knockdown of EIF2S1 furthermore impairs temperature compensation, suggesting that the role of CPSF6 in temperature compensation may be mediated by its regulation of EIF2S1.


2021 ◽  
Author(s):  
Ananthanarayanan Kumar ◽  
Conny W.H. Yu ◽  
Juan B. Rodríguez-Molina ◽  
Xiao-Han Li ◽  
Stefan M.V. Freund ◽  
...  

Cleavage and polyadenylation factor (CPF/CPSF) is a multiprotein complex essential for mRNA 3′ end processing in eukaryotes. It contains an endonuclease that cleaves pre-mRNAs, and a polymerase that adds a poly(A) tail onto the cleaved 3′ end. Several CPF subunits, including Fip1, contain intrinsically disordered regions (IDRs). IDRs within multiprotein complexes can be flexible, or can become ordered upon interaction with binding partners. Here, we show that yeast Fip1 anchors the poly(A) polymerase Pap1 onto CPF via an interaction with zinc finger 4 of another CPF subunit, Yth1. We also reconstitute a fully recombinant 850-kDa CPF. By incorporating selectively labeled Fip1 into recombinant CPF, we could study the dynamics of Fip1 within the megadalton complex using nuclear magnetic resonance (NMR) spectroscopy. This reveals that a Fip1 IDR that connects the Yth1- and Pap1-binding sites remains highly dynamic within CPF. Together, our data suggest that Fip1 dynamics within the 3′ end processing machinery are required to coordinate cleavage and polyadenylation.


2021 ◽  
Vol 49 (18) ◽  
pp. 10369-10381
Author(s):  
Zhaozhao Zhao ◽  
Qiushi Xu ◽  
Ran Wei ◽  
Leihuan Huang ◽  
Weixu Wang ◽  
...  

Abstract Somatic single nucleotide variants (SNVs) in cancer genome affect gene expression through various mechanisms depending on their genomic location. While somatic SNVs near canonical splice sites have been reported to cause abnormal splicing of cancer-related genes, whether these SNVs can affect gene expression through other mechanisms remains an open question. Here, we analyzed RNA sequencing and exome data from 4,998 cancer patients covering ten cancer types and identified 152 somatic SNVs near splice sites that were associated with abnormal intronic polyadenylation (IPA). IPA-associated somatic variants favored the localization near the donor splice sites compared to the acceptor splice sites. A proportion of SNV-associated IPA events overlapped with premature cleavage and polyadenylation events triggered by U1 small nuclear ribonucleoproteins (snRNP) inhibition. GC content, intron length and polyadenylation signal were three genomic features that differentiated between SNV-associated IPA and intron retention. Notably, IPA-associated SNVs were enriched in tumor suppressor genes (TSGs), including the well-known TSGs such as PTEN and CDH1 with recurrent SNV-associated IPA events. Minigene assay confirmed that SNVs from PTEN, CDH1, VEGFA, GRHL2, CUL3 and WWC2 could lead to IPA. This work reveals that IPA acts as a novel mechanism explaining the functional consequence of somatic SNVs in human cancer.


2021 ◽  
Vol 9 (9) ◽  
pp. 1885
Author(s):  
Rachael E. Turner ◽  
Traude H. Beilharz

Alternative polyadenylation (APA) represents an important mechanism for regulating isoform-specific translation efficiency, stability, and localisation. Though some progress has been made in understanding its consequences in metazoans, the role of APA in the model organism Saccharomyces cerevisiae remains a relative mystery because, despite abundant studies on the translational state of mRNA, none differentiate mRNA isoforms’ alternative 3′-end. This review discusses the implications of alternative polyadenylation in S. cerevisiae using other organisms to draw inferences. Given the foundational role that research in this yeast has played in the discovery of the mechanisms of cleavage and polyadenylation and in the drivers of APA, it is surprising that such an inference is required. However, because advances in ribosome profiling are insensitive to APA, how it impacts translation is still unclear. To bridge the gap between widespread observed APA and the discovery of any functional consequence, we also provide a review of the experimental techniques used to uncover the functional importance of 3′ UTR isoforms on translation.


2021 ◽  
Author(s):  
Juan B Rodriguez-Molina ◽  
Francis J O'Reilly ◽  
Eleanor Sheekey ◽  
Sarah Maslen ◽  
J Mark Skehel ◽  
...  

Most eukaryotic messenger RNAs (mRNAs) are processed at their 3'-end by the cleavage and polyadenylation factor (CPF/CPSF). CPF mediates endonucleolytic cleavage of the pre-mRNA and addition of a polyadenosine (poly(A)) tail, which together define the 3'-end of the mature transcript. Activation of CPF is highly regulated to maintain fidelity of RNA processing. Here, using cryoEM of yeast CPF, we show that the Mpe1 subunit directly contacts the polyadenylation signal sequence in nascent pre-mRNA. This RNA-mediated link between the nuclease and polymerase modules promotes activation of the CPF endonuclease and controls polyadenylation. Mpe1 rearrangement is antagonized by another subunit, Cft2. In vivo, depletion of Mpe1 leads to widespread defects in transcription termination by RNA Polymerase II, resulting in transcription interference on neighboring genes. Together, our data suggest that Mpe1 plays a major role in selecting the cleavage site, activating CPF and ensuring timely transcription termination. 


2021 ◽  
Vol 129 (Suppl_1) ◽  
Author(s):  
Rahul Neupane ◽  
Hari Krishna Yalamanchili ◽  
Rajasekaran Mahalingam ◽  
Scott D Collum ◽  
Keith Youker ◽  
...  

Background: Alternative polyadenylation (APA) is an emerging post-transcriptional mechanism for gene regulation that generates distinct isoforms of mRNA with different 3′ untranslated regions (3’UTR) lengths. APA plays an important role in different biological processes and dysregulation of APA leads to many human diseases. However, the functional consequences of APA events in the left ventricle (LV) failure in humans remain unexplored. Objective: To identify whether the 3′UTR length is modulated by APA in the LV failure in humans compared to healthy LV. Methods and Results: We used Poly(A)-ClickSeq RNA sequencing and PolyA-miner algorithm to measure the global patterns of APA in healthy and failing human LV specimens. We determined shortening versus lengthening of 3′UTRs based on the PolyA index, a metric unit that determines the length of 3′UTR. Based on these scores, we identified 129 genes with a significant shift of cleavage site usage in failing LV compared to healthy LV specimens. By examining polyadenylation events in these hearts, we identified disease-specific APA signatures in many genes. In addition, differential APA events in LV failure regulate many pathways important for the progression of LV failure. Finally, the regulator proteins of APA including cleavage and polyadenylation specificity factor (CPSF) 6 and 7, cleavage factor Im (CFIm) 25 and 59 have been regulated in LV failure compared to healthy LV specimens. Conclusions: Our results provide genome-wide, polyadenylation maps of the human heart and show that APA of mRNA is dynamic in the progression of LV failure in humans. Demonstrating that APA mediated 3’UTR length regulation provides the additional layer of gene expressions in LV failure.


2021 ◽  
Author(s):  
Matti Turtola ◽  
M. Cemre Manav ◽  
Ananthanarayanan Kumar ◽  
Agnieszka Tudek ◽  
Seweryn Mroczek ◽  
...  

Biogenesis of most eukaryotic mRNAs involves the addition of an untemplated polyadenosine (pA) tail by the cleavage and polyadenylation machinery. The pA tail, and its exact length, impacts mRNA stability, nuclear export, and translation. To define how polyadenylation is controlled in S. cerevisiae, we have used an in vivo assay capable of assessing nuclear pA tail synthesis, analyzed tail length distributions by direct RNA sequencing, and reconstituted polyadenylation reactions with purified components. This revealed three control mechanisms for pA tail length. First, we found that the pA binding protein (PABP) Nab2p is the primary regulator of pA tail length. Second, when Nab2p is limiting, the nuclear pool of Pab1p, the second major PABP in yeast, controls the process. Third, when both PABPs are absent, the cleavage and polyadenylation factor (CPF) limits pA tail synthesis. Thus, Pab1p and CPF provide fail-safe mechanisms to a primary Nab2p-dependent pathway, thereby preventing uncontrolled polyadenylation and allowing mRNA export and translation.


Sign in / Sign up

Export Citation Format

Share Document