hemiellipsoid body
Recently Published Documents


TOTAL DOCUMENTS

6
(FIVE YEARS 1)

H-INDEX

5
(FIVE YEARS 1)

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Nicholas James Strausfeld ◽  
Gabriella Hanna Wolff ◽  
Marcel Ethan Sayre

Descriptions of crustacean brains have focused mainly on three highly derived lineages of malacostracans: the reptantian infraorders represented by spiny lobsters, lobsters, and crayfish. Those descriptions advocate the view that dome- or cap-like neuropils, referred to as ‘hemiellipsoid bodies,’ are the ground pattern organization of centers that are comparable to insect mushroom bodies in processing olfactory information. Here we challenge the doctrine that hemiellipsoid bodies are a derived trait of crustaceans, whereas mushroom bodies are a derived trait of hexapods. We demonstrate that mushroom bodies typify lineages that arose before Reptantia and exist in Reptantia thereby indicating that the mushroom body, not the hemiellipsoid body, provides the ground pattern for both crustaceans and hexapods. We show that evolved variations of the mushroom body ground pattern are, in some lineages, defined by extreme diminution or loss and, in others, by the incorporation of mushroom body circuits into lobeless centers. Such transformations are ascribed to modifications of the columnar organization of mushroom body lobes that, as shown in Drosophila and other hexapods, contain networks essential for learning and memory.


2012 ◽  
Vol 520 (13) ◽  
pp. 2824-2846 ◽  
Author(s):  
Gabriella Wolff ◽  
Steffen Harzsch ◽  
Bill S. Hansson ◽  
Sheena Brown ◽  
Nicholas Strausfeld

1999 ◽  
Vol 81 (1) ◽  
pp. 334-344 ◽  
Author(s):  
Sergey Yagodin ◽  
Carlos Collin ◽  
Daniel L. Alkon ◽  
Norman F. Sheppard ◽  
David B. Sattelle

Yagodin, Sergey, Carlos Collin, Daniel L. Alkon, Norman F. Sheppard, Jr., and David B. Sattelle. Mapping membrane potential transients in crayfish ( Procambarus clarkii) optic lobe neuropils with voltage-sensitive dyes. J. Neurophysiol. 81: 334–344, 1999. Voltage-sensitive dyes NK 2761 and RH 155 were employed (in conjunction with a 12 × 12 photodiode array) to study membrane potential transients in optic lobe neuropils in the eye stalk of the crayfish Procambarus clarkii. By this means we investigated a pathway linking deutocerebral projection neurons, via hemiellipsoid body local interneurons, to an unidentified target (most likely neurons processing visual information) in the medulla terminalis. Rapid (10- to 20-ms duration), transient changes in absorption with the characteristics of action potentials were recorded from the optic nerve and the region occupied by deutocerebral projection neurons after stimulation of the olfactory globular tract in the optic nerve and were blocked by 1 μM tetrodotoxin. Action potentials appeared to propagate to the glomerular layer of the hemiellipsoid body where synaptic responses were recorded from a restricted region of the hemiellipsoid body occupied by dendrites of hemiellipsoid body neurons. Action potentials were also recorded from processes of hemiellipsoid body neurons located in the medulla terminalis. Synaptic responses in the hemiellipsoid body and medulla terminalis were eliminated by addition to the saline of 500 μM Cd2+ or 20 mM Co2+, whereas the action potential attributed to branches of deutocerebral projection neurons in the hemiellipsoid body remained unaffected. Action potentials of hemiellipsoid body neurons in the medulla terminalis evoked postsynaptic potentials (50- to 200-ms duration) with an unidentified target in the medulla terminalis. Transient absorption signals were not detected in either the internal or external medulla nor were they recorded from other parts of the optic lobes in response to electrical stimulation of axons of the deutocerebral projection neurons. Functional maps of optical activity, together with electrophysiological and pharmacological findings, suggest that γ-aminobutyric acid affects synaptic transmission in glomeruli of the hemiellipsoid body. Synapses of the olfactory pathway located in the medulla terminalis may act as a “filter,” modifying visual information processing during olfactory stimulation.


Sign in / Sign up

Export Citation Format

Share Document