ground pattern
Recently Published Documents


TOTAL DOCUMENTS

79
(FIVE YEARS 16)

H-INDEX

16
(FIVE YEARS 3)

Zoomorphology ◽  
2022 ◽  
Author(s):  
J. Matthias Starck ◽  
Jelena Belojević ◽  
Jason Brozio ◽  
Lisa Mehnert

AbstractWe compare the microscopic anatomy of the mouthparts of representative species of Solifugae, Pseudoscorpiones and Parasitiformes (Acari). Specifically, we focus on the epistome, the labrum, the lateral lips (= endites of the pedipalpal coxae) and the musculature of the pharyngeal suction pump. We provide evidence that the labrum is reduced in Solifugae, but present and functional in Pseudoscorpiones and Acari. The epistome constitutes the entire dorsal face of the rostrosoma in Solifugae, but is internalized into the prosoma in Pseudoscorpiones. In Acari, the epistome shows an ancestral morphology, probably close to the ground pattern of chelicerates. The lateral lips of Solifugae contribute to the ventral face of the rostrosoma and the two lips of the mouth opening. In Solifugae, the ventral rostrosoma also includes a sclerite that might derive from a tritosternum. In Pseudoscorpiones, the lateral lips remain independent of the rostrosoma, they interlock ventral to the rostrosoma forming a perioral space. Here, the rostrosoma has an unpaired ventral lip of unresolved morphological origin, which is, however, clearly distinct from the lateral lips of Solifugae. The pharyngeal suction pump differs in all three clades in attachment, number of muscles and origin of muscles. We interpret the data as evidence for independent, parallel evolution of elements of the ground pattern of the (eu)chelicerate mouth parts. Based on the morphological elements of a common euchelicerate ground plan, the rostrosoma evolved independently in the three clades. We reject earlier hypotheses that consider the rostrosoma a character to support a phylogenetic relationship of the three clades.


BMC Zoology ◽  
2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Jakob Prömer ◽  
Andy Sombke ◽  
Thomas Schwaha

Abstract Background Bryozoans are sessile aquatic suspension feeders in mainly marine, but also freshwater habitats. Most species belong to the marine and calcified Cheilostomata. Since this taxon remains mostly unstudied regarding its neuroanatomy, the focus of this study is on the characterization and ground pattern reconstruction of the autozooidal nervous system based on six representatives. Results A common neuronal innervation pattern is present in the investigated species: a cerebral ganglion is located at the base of the lophophore, from where neurite bundles embrace the mouth opening to form a circumoral nerve ring. Four neurite bundles project from the cerebral ganglion to innervate peripheral areas, such as the body wall and parietal muscles via the tentacle sheath. Five neurite bundles comprise the main innervation of the visceral tract. Four neurite bundles innervate each tentacle via the circumoral nerve ring. Mediofrontal tentacle neurite bundles emerge directly from the nerve ring. Two laterofrontal- and one abfrontal tentacle neurite bundles emanate from radial neurite bundles, which originate from the cerebral ganglion and circumoral nerve ring in between two adjacent tentacles. The radial neurite bundles terminate in intertentacular pits and give rise to one abfrontal neurite bundle at the oral side and two abfrontal neurite bundles at the anal side. Similar patterns are described in ctenostome bryozoans. Conclusions The present results thus represent the gymnolaemate situation. Innervation of the tentacle sheath and visceral tract by fewer neurite bundles and tentacular innervation by four to six tentacle neurite bundles support cyclostomes as sister taxon to gymnolaemates. Phylactolaemates feature fewer distinct neurite bundles in visceral- and tentacle sheath innervation, which always split in nervous plexus, and their tentacles have six neurite bundles. Thus, this study supports phylactolaemates as sistergroup to myolaemates.


Zoomorphology ◽  
2021 ◽  
Author(s):  
Benjamin Wipfler ◽  
Sven Bradler ◽  
Sebastian Büsse ◽  
Jörg Hammel ◽  
Bernd R. Müller ◽  
...  

AbstractThe morphology of the antennal hearts in the head of Phasmatodea and Embioptera was investigated with particular reference to phylogenetically relevant key taxa. The antennal circulatory organs of all examined species have the same basic construction: they consist of antennal vessels that are connected to ampullae located in the head near the antenna base. The ampullae are pulsatile due to associated muscles, but the points of attachment differ between the species studied. All examined Phasmatodea species have a Musculus (M.) interampullaris which extends between the two ampullae plus a M. ampulloaorticus that runs from the ampullae to the anterior end of the aorta; upon contraction, all these muscles dilate the lumina of both ampullae at the same time. In Embioptera, only the australembiid Metoligotoma has an M. interampullaris. All other studied webspinners instead have a M. ampullofrontalis which extends between the ampullae and the frontal region of the head capsule; these species do not have M. ampulloaorticus. Outgroup comparison indicates that an antennal heart with a M. interampullaris is the plesiomorphic character state among Embioptera and the likely ground pattern of the taxon Eukinolabia. Antennal hearts with a M. ampullofrontalis represent a derived condition that occurs among insects only in some embiopterans. These findings help to further clarify the controversially discussed internal phylogeny of webspinners by supporting the view that Australembiidae are the sister group of the remaining Embioptera.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Brett C. Gonzalez ◽  
Alejandro Martínez ◽  
Katrine Worsaae ◽  
Karen J. Osborn

AbstractAcross Annelida, accessing the water column drives morphological and lifestyle modifications—yet in the primarily “benthic” scale worms, the ecological significance of swimming has largely been ignored. We investigated genetic, morphological and behavioural adaptations associated with swimming across Polynoidae, using mitogenomics and comparative methods. Mitochondrial genomes from cave and pelagic polynoids were highly similar, with non-significant rearrangements only present in cave Gesiella. Gene orders of the new mitogenomes were highly similar to shallow water species, suggestive of an underlying polynoid ground pattern. Being the first phylogenetic analyses to include the holopelagic Drieschia, we recovered this species nested among shallow water terminals, suggesting a shallow water ancestry. Based on these results, our phylogenetic reconstructions showed that swimming evolved independently three times in Polynoidae, involving convergent adaptations in morphology and motility patterns across the deep sea (Branchipolynoe), midwater (Drieschia) and anchialine caves (Pelagomacellicephala and Gesiella). Phylogenetic generalized least-squares (PGLS) analyses showed that holopelagic and anchialine cave species exhibit hypertrophy of the dorsal cirri, yet, these morphological modifications are achieved along different evolutionary pathways, i.e., elongation of the cirrophore versus style. Together, these findings suggest that a water column lifestyle elicits similar morphological adaptations, favouring bodies designed for drifting and sensing.


2021 ◽  
Vol 288 (1948) ◽  
Author(s):  
Chan Lin ◽  
Henk-Jan T. Hoving ◽  
Thomas W. Cronin ◽  
Karen J. Osborn

Nervous systems across Animalia not only share a common blueprint at the biophysical and molecular level, but even between diverse groups of animals the structure and neuronal organization of several brain regions are strikingly conserved. Despite variation in the morphology and complexity of eyes across malacostracan crustaceans, many studies have shown that the organization of malacostracan optic lobes is highly conserved. Here, we report results of divergent evolution to this ‘neural ground pattern’ discovered in hyperiid amphipods, a relatively small group of holopelagic malacostracan crustaceans that possess an unusually wide diversity of compound eyes. We show that the structure and organization of hyperiid optic lobes has not only diverged from the malacostracan ground pattern, but is also highly variable between closely related genera. Our findings demonstrate a variety of trade-offs between sensory systems of hyperiids and even within the visual system alone, thus providing evidence that selection has modified individual components of the central nervous system to generate distinct combinations of visual centres in the hyperiid optic lobes. Our results provide new insights into the patterns of brain evolution among animals that live under extreme conditions.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Nicholas Strausfeld ◽  
Marcel E Sayre

Neural organization of mushroom bodies is largely consistent across insects, whereas the ancestral ground pattern diverges broadly across crustacean lineages resulting in successive loss of columns and the acquisition of domed centers retaining ancestral Hebbian-like networks and aminergic connections. We demonstrate here a major departure from this evolutionary trend in Brachyura, the most recent malacostracan lineage. In the shore crab Hemigrapsus nudus, instead of occupying the rostral surface of the lateral protocerebrum, mushroom body calyces are buried deep within it with their columns extending outwards to an expansive system of gyri on the brain’s surface. The organization amongst mushroom body neurons reaches extreme elaboration throughout its constituent neuropils. The calyces, columns, and especially the gyri show DC0 immunoreactivity, an indicator of extensive circuits involved in learning and memory.


2020 ◽  
Author(s):  
Nicholas James Strausfeld ◽  
Marcel Ethan Sayre

AbstractNeural organization of mushroom bodies is largely consistent across insects, whereas the ancestral ground pattern diverges broadly across crustacean lineages, resulting in successive loss of columns and the acquisition of domed centers retaining ancestral Hebbian-like networks and aminergic connections. We demonstrate here a major departure from this evolutionary trend in Brachyura, the most recent malacostracan lineage. Instead of occupying the rostral surface of the lateral protocerebrum, mushroom body calyces are buried deep within it, with their columns extending outwards to an expansive system of gyri on the brain’s surface. The organization amongst mushroom body neurons reaches extreme elaboration throughout its constituent neuropils. The calyces, columns, and especially the gyri show DC0 immunoreactivity, an indicator of extensive circuits involved in learning and memory.


2020 ◽  
Vol 40 (6) ◽  
pp. 781-794 ◽  
Author(s):  
Mark J Grygier ◽  
Waltraud Klepal

Abstract Lattice organs on the dorsal part of the carapace were examined by scanning electron microscopy (SEM) in females, males, and/or cypridiform ascothoracid-larvae (in the ascothoracid-larva I stage, for the first time ever) of six species of Ascothoracida representing four genera and three families: Waginella sandersi (Newman, 1974), W. ?metacrinicola (Okada, 1926), and Gorgonolaureus muzikaeGrygier, 1981 (family Synagogidae); BaccalaureusBroch 1929, unidentified species (Lauridae); and Ascothorax gigasWagin, 1968 and A. synagogoides (Wagin, 1964) (Ascothoracidae). All were of the “keel in a trough” or “tube in a trough” type, but they varied even more than those of previously studied ascothoracidans in number, form, orientation, and terminal pore position. Such extensive variability, summarized graphically herein, limits the potential utility of Ascothoracida (parasites of anthozoans and echinoderms) as an out-group for polarizing lattice organ character-state variation in Cirripedia (free-living and parasitic barnacles). While the ground-pattern of lattice organs in Thecostraca (comprising Ascothoracida, Cirripedia, and Facetotecta, or “y-larvae”) includes two anterior and three posterior pairs, ascothoracid-larvae and males of AscothoraxDjakonov, 1914 and DendrogasterKnipovich, 1890 (family Dendrogastridae) have only two posterior pairs; evidence as to which pair is missing is discussed. The hypothesis that dorsal setae in thecostracan nauplii are the precursors of lattice organs in later developmental stages is reexamined; one-to-one positional matching of such setae to lattice organs is difficult in Ascothoracida. Newly characterized structures of unknown function, termed “reticulated pore-plates”, exist along the hinge line in a juvenile male of G. muzikae. The “pits” reported earlier along the anterior valve margin in ascothoracid-larva II of A. synagogoides are actually clusters of pores that may be homologous to these pore-plates. Potentially homologous pore-fields in other ascothoracidans are reviewed from the literature or described anew using SEM.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Nicholas James Strausfeld ◽  
Gabriella Hanna Wolff ◽  
Marcel Ethan Sayre

Descriptions of crustacean brains have focused mainly on three highly derived lineages of malacostracans: the reptantian infraorders represented by spiny lobsters, lobsters, and crayfish. Those descriptions advocate the view that dome- or cap-like neuropils, referred to as ‘hemiellipsoid bodies,’ are the ground pattern organization of centers that are comparable to insect mushroom bodies in processing olfactory information. Here we challenge the doctrine that hemiellipsoid bodies are a derived trait of crustaceans, whereas mushroom bodies are a derived trait of hexapods. We demonstrate that mushroom bodies typify lineages that arose before Reptantia and exist in Reptantia thereby indicating that the mushroom body, not the hemiellipsoid body, provides the ground pattern for both crustaceans and hexapods. We show that evolved variations of the mushroom body ground pattern are, in some lineages, defined by extreme diminution or loss and, in others, by the incorporation of mushroom body circuits into lobeless centers. Such transformations are ascribed to modifications of the columnar organization of mushroom body lobes that, as shown in Drosophila and other hexapods, contain networks essential for learning and memory.


Electronics ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 1532 ◽  
Author(s):  
Jamie Wubben ◽  
Francisco Fabra ◽  
Carlos T. Calafate ◽  
Tomasz Krzeszowski ◽  
Johann M. Marquez-Barja ◽  
...  

Over the last few years, several researchers have been developing protocols and applications in order to autonomously land unmanned aerial vehicles (UAVs). However, most of the proposed protocols rely on expensive equipment or do not satisfy the high precision needs of some UAV applications such as package retrieval and delivery or the compact landing of UAV swarms. Therefore, in this work, a solution for high precision landing based on the use of ArUco markers is presented. In the proposed solution, a UAV equipped with a low-cost camera is able to detect ArUco markers sized 56 × 56 cm from an altitude of up to 30 m. Once the marker is detected, the UAV changes its flight behavior in order to land on the exact position where the marker is located. The proposal was evaluated and validated using both the ArduSim simulation platform and real UAV flights. The results show an average offset of only 11 cm from the target position, which vastly improves the landing accuracy compared to the traditional GPS-based landing, which typically deviates from the intended target by 1 to 3 m.


Sign in / Sign up

Export Citation Format

Share Document