Neuronal organization of the hemiellipsoid body of the land hermit crab, Coenobita clypeatus: Correspondence with the mushroom body ground pattern

2012 ◽  
Vol 520 (13) ◽  
pp. 2824-2846 ◽  
Author(s):  
Gabriella Wolff ◽  
Steffen Harzsch ◽  
Bill S. Hansson ◽  
Sheena Brown ◽  
Nicholas Strausfeld
eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Nicholas James Strausfeld ◽  
Gabriella Hanna Wolff ◽  
Marcel Ethan Sayre

Descriptions of crustacean brains have focused mainly on three highly derived lineages of malacostracans: the reptantian infraorders represented by spiny lobsters, lobsters, and crayfish. Those descriptions advocate the view that dome- or cap-like neuropils, referred to as ‘hemiellipsoid bodies,’ are the ground pattern organization of centers that are comparable to insect mushroom bodies in processing olfactory information. Here we challenge the doctrine that hemiellipsoid bodies are a derived trait of crustaceans, whereas mushroom bodies are a derived trait of hexapods. We demonstrate that mushroom bodies typify lineages that arose before Reptantia and exist in Reptantia thereby indicating that the mushroom body, not the hemiellipsoid body, provides the ground pattern for both crustaceans and hexapods. We show that evolved variations of the mushroom body ground pattern are, in some lineages, defined by extreme diminution or loss and, in others, by the incorporation of mushroom body circuits into lobeless centers. Such transformations are ascribed to modifications of the columnar organization of mushroom body lobes that, as shown in Drosophila and other hexapods, contain networks essential for learning and memory.


2015 ◽  
Vol 363 (3) ◽  
pp. 635-648 ◽  
Author(s):  
Torben Stemme ◽  
Thomas M. Iliffe ◽  
Gerd Bicker

2019 ◽  
Author(s):  
Nicholas J. Strausfeld ◽  
Gabriella H. Wolff ◽  
Marcel E. Sayre

AbstractDescriptions of crustacean brains have mainly focused on three highly derived lineages: the reptantian infraorders represented by spiny lobsters, lobsters, and crayfish. Those descriptions advocate the view that dome- or cap-like neuropils, referred to as “hemiellipsoid bodies,” are the ground pattern organization of centers that are comparable to insect mushroom bodies in processing olfactory information. Here we challenge the doctrine that hemiellipsoid bodies are a derived trait of crustaceans, whereas mushroom bodies are a derived trait of hexapods. We demonstrate that mushroom bodies typify lineages that arose before Reptantia and exist in Reptantia. We show that evolved variations of the mushroom body ground pattern are, in some lineages, defined by extreme diminution or loss and, in others, by the incorporation of mushroom body circuits into lobeless centers. Such transformations are ascribed to modifications of the columnar organization of mushroom body lobes that, as shown in Drosophila and other hexapods, contain networks essential for learning and memory. We propose that lobed mushroom bodies distinguish crustaceans that negotiate the multidimensionality of complex ecologies, where continuous updating of multistimulus valence and memory is paramount.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Nicholas Strausfeld ◽  
Marcel E Sayre

Neural organization of mushroom bodies is largely consistent across insects, whereas the ancestral ground pattern diverges broadly across crustacean lineages resulting in successive loss of columns and the acquisition of domed centers retaining ancestral Hebbian-like networks and aminergic connections. We demonstrate here a major departure from this evolutionary trend in Brachyura, the most recent malacostracan lineage. In the shore crab Hemigrapsus nudus, instead of occupying the rostral surface of the lateral protocerebrum, mushroom body calyces are buried deep within it with their columns extending outwards to an expansive system of gyri on the brain’s surface. The organization amongst mushroom body neurons reaches extreme elaboration throughout its constituent neuropils. The calyces, columns, and especially the gyri show DC0 immunoreactivity, an indicator of extensive circuits involved in learning and memory.


2020 ◽  
Author(s):  
Nicholas James Strausfeld ◽  
Marcel Ethan Sayre

AbstractNeural organization of mushroom bodies is largely consistent across insects, whereas the ancestral ground pattern diverges broadly across crustacean lineages, resulting in successive loss of columns and the acquisition of domed centers retaining ancestral Hebbian-like networks and aminergic connections. We demonstrate here a major departure from this evolutionary trend in Brachyura, the most recent malacostracan lineage. Instead of occupying the rostral surface of the lateral protocerebrum, mushroom body calyces are buried deep within it, with their columns extending outwards to an expansive system of gyri on the brain’s surface. The organization amongst mushroom body neurons reaches extreme elaboration throughout its constituent neuropils. The calyces, columns, and especially the gyri show DC0 immunoreactivity, an indicator of extensive circuits involved in learning and memory.


Sign in / Sign up

Export Citation Format

Share Document