gas gradients
Recently Published Documents


TOTAL DOCUMENTS

9
(FIVE YEARS 0)

H-INDEX

6
(FIVE YEARS 0)

2016 ◽  
Vol 120 (2) ◽  
pp. 282-296 ◽  
Author(s):  
Michael M. Tymko ◽  
Ryan L. Hoiland ◽  
Tomas Kuca ◽  
Lindsey M. Boulet ◽  
Joshua C. Tremblay ◽  
...  

Our aim was to quantify the end-tidal-to-arterial gas gradients for O2 (PET-PaO2) and CO2 (Pa-PETCO2) during a CO2 reactivity test to determine their influence on the cerebrovascular (CVR) and ventilatory (HCVR) response in subjects with (PFO+, n = 8) and without (PFO−, n = 7) a patent foramen ovale (PFO). We hypothesized that 1) the Pa-PETCO2 would be greater in hypoxia compared with normoxia, 2) the Pa-PETCO2 would be similar, whereas the PET-PaO2 gradient would be greater in those with a PFO, 3) the HCVR and CVR would be underestimated when plotted against PETCO2 compared with PaCO2, and 4) previously derived prediction algorithms will accurately target PaCO2. PETCO2 was controlled by dynamic end-tidal forcing in steady-state steps of −8, −4, 0, +4, and +8 mmHg from baseline in normoxia and hypoxia. Minute ventilation (V̇E), internal carotid artery blood flow (Q̇ICA), middle cerebral artery blood velocity (MCAv), and temperature corrected end-tidal and arterial blood gases were measured throughout experimentation. HCVR and CVR were calculated using linear regression analysis by indexing V̇E and relative changes in Q̇ICA, and MCAv against PETCO2, predicted PaCO2, and measured PaCO2. The Pa-PETCO2 was similar between hypoxia and normoxia and PFO+ and PFO−. The PET-PaO2 was greater in PFO+ by 2.1 mmHg during normoxia ( P = 0.003). HCVR and CVR plotted against PETCO2 underestimated HCVR and CVR indexed against PaCO2 in normoxia and hypoxia. Our PaCO2 prediction equation modestly improved estimates of HCVR and CVR. In summary, care must be taken when indexing reactivity measures to PETCO2 compared with PaCO2.


2015 ◽  
Vol 308 (11) ◽  
pp. R895-R906 ◽  
Author(s):  
Michael M. Tymko ◽  
Philip N. Ainslie ◽  
David B. MacLeod ◽  
Chris K. Willie ◽  
Glen E. Foster

We sought to characterize and quantify the performance of a portable dynamic end-tidal forcing (DEF) system in controlling the partial pressure of arterial CO2 (PaCO2) and O2 (PaO2) at low (LA; 344 m) and high altitude (HA; 5,050 m) during an isooxic CO2 test and an isocapnic O2 test, which is commonly used to measure ventilatory and vascular reactivity in humans ( n = 9). The isooxic CO2 tests involved step changes in the partial pressure of end-tidal CO2 (PetCO2) of −10, −5, 0, +5, and +10 mmHg from baseline. The isocapnic O2 test consisted of a 10-min hypoxic step (PetO2 = 47 mmHg) from baseline at LA and a 5-min euoxic step (PetO2 = 100 mmHg) from baseline at HA. At both altitudes, PetO2 and PetCO2 were controlled within narrow limits (<1 mmHg from target) during each protocol. During the isooxic CO2 test at LA, PetCO2 consistently overestimated PaCO2 ( P < 0.01) at both baseline (2.1 ± 0.5 mmHg) and hypercapnia (+5 mmHg: 2.1 ± 0.7 mmHg; +10 mmHg: 1.9 ± 0.5 mmHg). This Pa-PetCO2 gradient was approximately twofold greater at HA ( P < 0.05). At baseline at both altitudes, PetO2 overestimated PaO2 by a similar extent (LA: 6.9 ± 2.1 mmHg; HA: 4.5 ± 0.9 mmHg; both P < 0.001). This overestimation persisted during isocapnic hypoxia at LA (6.9 ± 0.6 mmHg) and during isocapnic euoxia at HA (3.8 ± 1.2 mmHg). Step-wise multiple regression analysis, on the basis of the collected data, revealed that it may be possible to predict an individual's arterial blood gases during DEF. Future research is needed to validate these prediction algorithms and determine the implications of end-tidal-to-arterial gradients in the assessment of ventilatory and/or vascular reactivity.


2011 ◽  
Vol 11 (12) ◽  
pp. 6115-6137 ◽  
Author(s):  
G. L. Manney ◽  
M. I. Hegglin ◽  
W. H. Daffer ◽  
M. L. Santee ◽  
E. A. Ray ◽  
...  

Abstract. A method of classifying the upper tropospheric/lower stratospheric (UTLS) jets has been developed that allows satellite and aircraft trace gas data and meteorological fields to be efficiently mapped in a jet coordinate view. A detailed characterization of multiple tropopauses accompanies the jet characterization. Jet climatologies show the well-known high altitude subtropical and lower altitude polar jets in the upper troposphere, as well as a pattern of concentric polar and subtropical jets in the Southern Hemisphere, and shifts of the primary jet to high latitudes associated with blocking ridges in Northern Hemisphere winter. The jet-coordinate view segregates air masses differently than the commonly-used equivalent latitude (EqL) coordinate throughout the lowermost stratosphere and in the upper troposphere. Mapping O3 data from the Aura Microwave Limb Sounder (MLS) satellite and the Winter Storms aircraft datasets in jet coordinates thus emphasizes different aspects of the circulation compared to an EqL-coordinate framework: the jet coordinate reorders the data geometrically, thus highlighting the strong PV, tropopause height and trace gas gradients across the subtropical jet, whereas EqL is a dynamical coordinate that may blur these spatial relationships but provides information on irreversible transport. The jet coordinate view identifies the concentration of stratospheric ozone well below the tropopause in the region poleward of and below the jet core, as well as other transport features associated with the upper tropospheric jets. Using the jet information in EqL coordinates allows us to study trace gas distributions in regions of weak versus strong jets, and demonstrates weaker transport barriers in regions with less jet influence. MLS and Atmospheric Chemistry Experiment-Fourier Transform Spectrometer trace gas fields for spring 2008 in jet coordinates show very strong, closely correlated, PV, tropopause height and trace gas gradients across the jet, and evidence of intrusions of stratospheric air below the tropopause below and poleward of the subtropical jet; these features are consistent between instruments and among multiple trace gases. Our characterization of the jets is facilitating studies that will improve our understanding of upper tropospheric trace gas evolution.


2011 ◽  
Vol 11 (1) ◽  
pp. 1835-1889 ◽  
Author(s):  
G. L. Manney ◽  
M. I. Hegglin ◽  
W. H. Daffer ◽  
M. L. Santee ◽  
E. A. Ray ◽  
...  

Abstract. A method of classifying the upper tropospheric/lower stratospheric (UTLS) jets has been developed that allows satellite and aircraft trace gas data and meteorological fields to be efficiently mapped in a jet coordinate view. A detailed characterization of multiple tropopauses accompanies the jet characterization. Jet climatologies show the well-known high altitude subtropical and lower altitude polar jets in the upper troposphere, as well as a pattern of concentric polar and subtropical jets in the Southern Hemisphere, and shifts of the primary jet to high latitudes associated with blocking ridges in Northern Hemisphere winter. The jet-coordinate view segregates air masses differently than the commonly-used equivalent latitude (EqL) coordinate throughout the lowermost stratosphere and in the upper troposphere. Mapping O3 data from the Aura Microwave Limb Sounder (MLS) satellite and the Winter Storms aircraft datasets in jet coordinates highlights important advantages in comparison to an EqL-coordinate view: strong PV, tropopause height and trace gas gradients across the subtropical jet are washed out in the latter and clearly highlighted in the former. The jet coordinate view emphasizes the presence of stratospheric ozone well below the tropopause, especially poleward of and below the jet core, and highlights other transport features associated with the upper tropospheric jets. MLS and Atmospheric Chemistry Experiment-Fourier Transform Spectrometer trace gas fields for spring 2008 in jet coordinates show very strong, closely correlated, PV, tropopause height and trace gas gradients across the jet, and evidence of intrusions of stratospheric air below the tropopause below and poleward of the subtropical jet; these features are consistent between instruments and among multiple trace gases. Our characterization of the jets is facilitating studies that will improve our understanding of upper tropospheric trace gas evolution.


2010 ◽  
Vol 61 (10) ◽  
pp. 2745-2755 ◽  
Author(s):  
Q. Tri Ho ◽  
Pieter Verboven ◽  
Bert E. Verlinden ◽  
Ann Schenk ◽  
Mulugeta A. Delele ◽  
...  

2001 ◽  
Vol 91 (6) ◽  
pp. 2537-2545 ◽  
Author(s):  
Aloka L. Patel ◽  
Kathy Harris ◽  
Bradley T. Thach

Some infants sleep facedown for long periods with no ill effects, whereas others become hypoxemic. Rebreathing of expired air has been determined by CO2 measurement; however, O2 levels under such conditions have not been determined. To evaluate this and other factors influencing inspired gas concentrations, we studied 21 healthy infants during natural sleep while facedown on soft bedding. We measured gas exchange with the environment and bedding, ventilatory response to rebreathing, and concentrations of inspired CO2 and O2. Two important factors influencing inspired gas concentrations were 1) a variable seal between bedding and infants' faces and 2) gas gradients in the bedding beneath the infants, with O2-poor and CO2-rich air nearest to the face, fresher air distal to the face, and larger tidal volumes being associated with fresher inspired air. Minute ventilation increased significantly while rebreathing because of an increase in tidal volume, not frequency. The measured drop in inspired O2 was significantly greater than the accompanying rise in inspired CO2. This appears to be due to effects of the respiratory exchange ratio and differential tissue solubilities of CO2and O2 during unsteady conditions.


HortScience ◽  
1994 ◽  
Vol 29 (5) ◽  
pp. 447f-447
Author(s):  
Rufino Perez ◽  
Randolph M. Beaudry

Oxygen diffusive resistance of preclimacteric banana flesh is considered to be much lower than skin resistance such that negligible internal gradients in O2 are expected. Therefore, blocking O2 influx and CO2 efflux of banana by sealing 100% of the pores over fractions of one 1/4, 1/2, 3/4, and 7/8 of the surface, should generate an internal modified atmosphere similar to that achieved by using fruit coatings which cover 100% of banana surface but block only a fraction of the pores. Using gas trapping vials to determine internal O2 and CO2 levels, we followed O2 and CO2 behavior along the length of the fruit. Gradients for O2 and CO2 were found indicating sufficient flesh resistance exists to prevent consideration of internal resistances as negligible. Internal gas gradients were linked to ripening in that firmness and greenness were higher at the coated end. These results imply that banana flesh can not be treated according to the hollow sphere models previously suggested.


Sign in / Sign up

Export Citation Format

Share Document