sustained inhibition
Recently Published Documents


TOTAL DOCUMENTS

132
(FIVE YEARS 13)

H-INDEX

31
(FIVE YEARS 2)

2021 ◽  
Vol 8 ◽  
Author(s):  
Mikael Lund ◽  
Ankit S. Macwan ◽  
Kjersti Tunströmer ◽  
Tomas L. Lindahl ◽  
Niklas Boknäs

Heparin and bivalirudin are widely used as anticoagulants in the setting of acute thrombosis. In this study, we investigated how these drugs affect the ability of thrombin to generate a prothrombotic platelet response via activation of the protease-activated receptors (PARs) 1 and 4. We examined the effects of heparin/antithrombin and bivalirudin on PAR1- and PAR4-mediated intracellular calcium mobilization, aggregation, α-granule release, and procoagulant membrane exposure in platelets exposed to thrombin concentrations likely to be encountered in the thrombus microenvironment during thrombosis. At physiological antithrombin levels, heparin treatment resulted in complete and sustained inhibition of thrombin-induced PAR4-mediated platelet activation, but transient PAR1 signaling was sufficient to elicit significant α-granule release and platelet aggregation. In contrast, bivalirudin treatment resulted in rapid and profound inhibition of signaling from both PAR receptors, followed by a delayed phase of PAR4-mediated platelet activation, resulting in a robust prothrombotic response. Combination treatment with bivalirudin and subtherapeutic concentrations of heparin completely inhibited the residual platelet activation observed with single drug treatment at all time-points. Our results show that heparin and bivalirudin have different and complementary inhibitory effects on the activation of PAR1 and PAR4 by thrombin.


2021 ◽  
Vol 7 (30) ◽  
pp. eabh2059
Author(s):  
Aaron C. Koralek ◽  
Rui M. Costa

The balance between exploiting known actions and exploring alternatives is critical for survival and hypothesized to rely on shifts in neuromodulation. We developed a behavioral paradigm to capture exploitative and exploratory states and imaged calcium dynamics in genetically identified dopaminergic and noradrenergic neurons. During exploitative states, characterized by motivated repetition of the same action choice, dopamine neurons in SNc encoding movement vigor showed sustained elevation of basal activity that lasted many seconds. This sustained activity emerged from longer positive responses, which accumulated during exploitative action-reward bouts, and hysteretic dynamics. Conversely, noradrenergic neurons in LC showed sustained inhibition of basal activity due to the accumulation of longer negative responses in LC. Chemogenetic manipulation of these sustained dynamics revealed that dopaminergic activity mediates action drive, whereas noradrenergic activity modulates choice diversity. These data uncover the emergence of sustained neural states in dopaminergic and noradrenergic networks that mediate dissociable aspects of exploitative bouts.


2021 ◽  
Vol 191 (5) ◽  
pp. 947-964
Author(s):  
Rubens P. Homme ◽  
Harpal S. Sandhu ◽  
Akash K. George ◽  
Suresh C. Tyagi ◽  
Mahavir Singh
Keyword(s):  

2021 ◽  
Author(s):  
Youna Vandaele ◽  
Patricia H Janak

We have recently reported sustained inhibition in the dorsomedial striatum (DMS) and sustained excitation in the dorsolateral striatum (DLS) during execution of a lever press sequence in a discrete-trials task promoting habit. This sustained dorsostriatal activity was present early on, and did not clearly change in step with improved performance over ten training sessions. Early onset of sequence-related neural activity could have resulted from rapid habitual learning promoted by presentation of lever cues, predicting reward availability and delivery. To test this hypothesis, we compared DLS and DMS spiking activity in the discrete trials habit-promoting task with two task variants that promote goal-directed behavior. Comparison of the three tasks revealed that mean neuronal spiking activity was generally sustained across the lever press sequence in the task promoting habit and characterized by overall excitation in DLS and inhibition in DMS relative to baseline. In contrast, mean activity differences in DLS and DMS were much less prominent, and most changes occurred transiently around individual lever presses, in the tasks promoting goal-directed behavior. These results indicate that sequence delineation cues, such as the lever cues in these studies, promote habitual behavior and that this habitual behavior is encoded in the striatum by cue-triggered sustained DLS excitation and DMS inhibition that likely reflects cue-elicited behavioral chunking.


2021 ◽  
Author(s):  
Saray Soldado-Magraner ◽  
Helen Motanis ◽  
Rodrigo Laje ◽  
Dean V. Buonomano

ABSTRACTSelf-sustaining dynamics maintained through recurrent connections are of fundamental importance to cortical function. We show that Up-states—an example of self-sustained network dynamics—autonomously emerge in cortical circuits across three weeks of ex vivo development, establishing the presence of unsupervised synaptic learning rules that lead to globally stable emergent dynamics. Computational models of excitatory-inhibitory networks have established that four sets of weights (WE←E, WE←I, WI←E, WI←I) cooperate to generate stable self-sustained dynamics, but have not addressed how a family of learning rules can operate in parallel at all four weight classes to achieve self-sustained inhibition-stabilized regimes. Using numerical and analytical methods we show that standard homeostatic rules cannot account for the emergence of self-sustained dynamics due to the paradoxical effect. We derived a novel family of homeostatic learning rules that operate in parallel at all four synaptic classes, which robustly lead to the emergence of Up-states and balanced excitation-inhibition.


2020 ◽  
pp. 230-233 ◽  
Author(s):  
Marilina Raices

Chemical cues associated with predation attempts allow prey to trigger defensive behaviours. Accordingly, tadpoles of several species of anurans display strong behavioural responses to chemical cues of injured conspecifics. As part of the antipredator response, tadpoles show rapid and sustained inhibition of activity when exposed to chemical cues of predation. Although the ability to respond to cues of conspecifics has been confirmed in a wide variety of anuran species, studies about the tissue source and the chemical aspects of the molecules involved are scarce and contradictory. In the present work, we analysed the chemical characteristics, tissue source and release mechanism of the chemical alarm cue in Rhinella arenarum tadpoles. Our results support the hypothesis that a peptide of epidermal origin in mediates amphibian tadpole communication.


2020 ◽  
Vol 490 ◽  
pp. 44-53 ◽  
Author(s):  
Atanu Ghorai ◽  
Tejashree Mahaddalkar ◽  
Rahul Thorat ◽  
Shilpee Dutt

Sign in / Sign up

Export Citation Format

Share Document