noradrenergic neurons
Recently Published Documents


TOTAL DOCUMENTS

548
(FIVE YEARS 60)

H-INDEX

67
(FIVE YEARS 5)

2022 ◽  
Vol 17 (4) ◽  
pp. 881
Author(s):  
Shunpei Moriya ◽  
Akira Yamashita ◽  
Daiki Masukawa ◽  
Junichi Sakaguchi ◽  
Yoko Ikoma ◽  
...  

2021 ◽  
pp. 147754
Author(s):  
Long Ma ◽  
Jing-Yuan Tang ◽  
Jin-Yong Zhou ◽  
Ping Zhou ◽  
Chen Zhu ◽  
...  

2021 ◽  
Vol 11 (11) ◽  
pp. 1486
Author(s):  
Paul R. Manger ◽  
Oxana Eschenko

Descriptions of the nuclear parcellation of the locus coeruleus complex have been provided in approximately 80 mammal species spanning the phylogenetic breadth of this class. Within the mammalian rostral hindbrain, noradrenergic neurons (revealed with tyrosine hydroxylase and dopamine-ß-hydroxylase immunohistochemistry) have been observed within the periventricular grey matter (A4 and A6 nuclei) and parvicellular reticular nucleus (A5 and A7 nuclei), with the one exception to date being the tree pangolin, where no A4/A6 neurons are observed. The alphanumeric nomenclature system, developed in laboratory rodent brains, has been adapted to cover the variation observed across species. Cross-species homology is observed regarding the nuclear organization of noradrenergic neurons located in the parvicellular reticular nucleus (A5 and A7). In contrast, significant variations are observed in the organization of the A6 neurons of the locus coeruleus proper. In most mammals, the A6 is comprised of a moderate density of neurons, but in Murid rodents, primates, and megachiropteran bats, the A6 exhibits a very high density of neurons. In primates and megachiropterans, there is an additional moderate density of A6 neurons located rostromedial to the high-density portion. These variations are of importance in understanding the translation of findings in laboratory rodents to humans.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lorena Cuenca-Bermejo ◽  
Pilar Almela ◽  
Pablo Gallo-Soljancic ◽  
José E. Yuste ◽  
Vicente de Pablos ◽  
...  

AbstractThe impact of age-associated disorders is increasing as the life expectancy of the population increments. Cardiovascular diseases and neurodegenerative disorders, such as Parkinson’s disease, have the highest social and economic burden and increasing evidence show interrelations between them. Particularly, dysfunction of the cardiovascular nervous system is part of the dysautonomic symptoms of Parkinson’s disease, although more studies are needed to elucidate the role of cardiac function on it. We analyzed the dopaminergic system in the nigrostriatal pathway of Parkinsonian and dyskinetic monkeys and the expression of some key proteins in the metabolism and synthesis of catecholamines in the heart: total and phosphorylated (phospho) tyrosine hydroxylase (TH), and membrane (MB) and soluble (S) isoforms of catechol-O-methyl transferase (COMT). The dopaminergic system was significantly depleted in all MPTP-intoxicated monkeys. MPTP- and MPTP + L-DOPA-treated animals also showed a decrease in total TH expression in both right (RV) and left ventricle (LV). We found a significant increase of phospho-TH in both groups (MPTP and MPTP + L-DOPA) in the LV, while this increase was only observed in MPTP-treated monkeys in the RV. MB-COMT analysis showed a very significant increase of this isoform in the LV of MPTP- and MPTP + L-DOPA-treated animals, with no significant differences in S-COMT levels. These data suggest that MB-COMT is the main isoform implicated in the cardiac noradrenergic changes observed after MPTP treatment, suggesting an increase in noradrenaline (NA) metabolism. Moreover, the increase of TH activity indicates that cardiac noradrenergic neurons still respond despite MPTP treatment.


2021 ◽  
Vol 22 (16) ◽  
pp. 8510
Author(s):  
Xin Wang ◽  
Joan B. Escobar ◽  
David Mendelowitz

The tightly localized noradrenergic neurons (NA) in the locus coeruleus (LC) are well recognized as essential for focused arousal and novelty-oriented responses, while many children with autism spectrum disorder (ASD) exhibit diminished attention, engagement and orienting to exogenous stimuli. This has led to the hypothesis that atypical LC activity may be involved in ASD. Oxytocin (OXT) neurons and receptors are known to play an important role in social behavior, pair bonding and cognitive processes and are under investigation as a potential treatment for ASD. However, little is known about the neurotransmission from hypothalamic paraventricular (PVN) OXT neurons to LC NA neurons. In this study, we test, in male and female rats, whether PVN OXT neurons excite LC neurons, whether oxytocin is released and involved in this neurotransmission, and whether activation of PVN OXT neurons alters novel object recognition. Using “oxytocin sniffer cells” (CHO cells that express the human oxytocin receptor and a Ca indicator) we show that there is release of OXT from hypothalamic PVN OXT fibers in the LC. Optogenetic excitation of PVN OXT fibers excites LC NA neurons by co-release of OXT and glutamate, and this neurotransmission is greater in males than females. In male, but not in female animals, chemogenetic activation of PVN OXT neurons increases attention to novel objects.


2021 ◽  
Vol 7 (30) ◽  
pp. eabh2059
Author(s):  
Aaron C. Koralek ◽  
Rui M. Costa

The balance between exploiting known actions and exploring alternatives is critical for survival and hypothesized to rely on shifts in neuromodulation. We developed a behavioral paradigm to capture exploitative and exploratory states and imaged calcium dynamics in genetically identified dopaminergic and noradrenergic neurons. During exploitative states, characterized by motivated repetition of the same action choice, dopamine neurons in SNc encoding movement vigor showed sustained elevation of basal activity that lasted many seconds. This sustained activity emerged from longer positive responses, which accumulated during exploitative action-reward bouts, and hysteretic dynamics. Conversely, noradrenergic neurons in LC showed sustained inhibition of basal activity due to the accumulation of longer negative responses in LC. Chemogenetic manipulation of these sustained dynamics revealed that dopaminergic activity mediates action drive, whereas noradrenergic activity modulates choice diversity. These data uncover the emergence of sustained neural states in dopaminergic and noradrenergic networks that mediate dissociable aspects of exploitative bouts.


2021 ◽  
pp. 1-18
Author(s):  
Yasufumi Sakakibara ◽  
Yu Hirota ◽  
Kyoko Ibaraki ◽  
Kimi Takei ◽  
Sachie Chikamatsu ◽  
...  

Background: The locus coeruleus (LC), a brainstem nucleus comprising noradrenergic neurons, is one of the earliest regions affected by Alzheimer’s disease (AD). Amyloid-β (Aβ) pathology in the cortex in AD is thought to exacerbate the age-related loss of LC neurons, which may lead to cortical tau pathology. However, mechanisms underlying LC neurodegeneration remain elusive. Objective: Here, we aimed to examine how noradrenergic neurons are affected by cortical Aβ pathology in AppNL-G-F/NL-G-F knock-in mice. Methods: The density of noradrenergic axons in LC-innervated regions and the LC neuron number were analyzed by an immunohistochemical method. To explore the potential mechanisms for LC degeneration, we also examined the occurrence of tau pathology in LC neurons, the association of reactive gliosis with LC neurons, and impaired trophic support in the brains of AppNL-G-F/NL-G-F mice. Results: We observed a significant reduction in the density of noradrenergic axons from the LC in aged App NL-G-F/NL-G-F mice without neuron loss or tau pathology, which was not limited to areas near Aβ plaques. However, none of the factors known to be related to the maintenance of LC neurons (i.e., somatostatin/somatostatin receptor 2, brain-derived neurotrophic factor, nerve growth factor, and neurotrophin-3) were significantly reduced in App NL-G-F/NL-G-F mice. Conclusion: This study demonstrates that cortical Aβ pathology induces noradrenergic neurodegeneration, and further elucidation of the underlying mechanisms will reveal effective therapeutics to halt AD progression.


2021 ◽  
Vol 35 (S1) ◽  
Author(s):  
Yuan Chang ◽  
Jenny Sun ◽  
Andrew McKinney ◽  
Xiaolong Jiang ◽  
Russell Ray

Sign in / Sign up

Export Citation Format

Share Document