galilean system
Recently Published Documents


TOTAL DOCUMENTS

5
(FIVE YEARS 2)

H-INDEX

1
(FIVE YEARS 1)

2021 ◽  
Vol 133 (3) ◽  
Author(s):  
Giuseppe Pucacco

AbstractWe describe a comprehensive model for systems locked in the Laplace resonance. The framework is based on the simplest possible dynamical structure provided by the Keplerian problem perturbed by the resonant coupling truncated at second order in the eccentricities. The reduced Hamiltonian, constructed by a transformation to resonant coordinates, is then submitted to a suitable ordering of the terms and to the study of its equilibria. Henceforth, resonant normal forms are computed. The main result is the identification of two different classes of equilibria. In the first class, only one kind of stable equilibrium is present: the paradigmatic case is that of the Galilean system. In the second class, three kinds of stable equilibria are possible and at least one of them is characterised by a high value of the forced eccentricity for the ‘first planet’: here, the paradigmatic case is the exo-planetary system GJ-876, in which the combination of libration centres admits triple conjunctions otherwise not possible in the Galilean case. The normal form obtained by averaging with respect to the free eccentricity oscillations describes the libration of the Laplace argument for arbitrary amplitudes and allows us to determine the libration width of the resonance. The agreement of the analytic predictions with the numerical integration of the toy models is very good.


2020 ◽  
Vol 638 ◽  
pp. A135 ◽  
Author(s):  
N. Oberg ◽  
I. Kamp ◽  
S. Cazaux ◽  
Ch. Rab

Context. The Galilean satellites are thought to have formed from a circumplanetary disk (CPD) surrounding Jupiter. When it reached a critical mass, Jupiter opened an annular gap in the solar protoplanetary disk that might have exposed the CPD to radiation from the young Sun or from the stellar cluster in which the Solar System formed. Aims. We investigate the radiation field to which the Jovian CPD was exposed during the process of satellite formation. The resulting photoevaporation of the CPD is studied in this context to constrain possible formation scenarios for the Galilean satellites and explain architectural features of the Galilean system. Methods. We constructed a model for the stellar birth cluster to determine the intracluster far-ultraviolet (FUV) radiation field. We employed analytical annular gap profiles informed by hydrodynamical simulations to investigate a range of plausible geometries for the Jovian gap. We used the radiation thermochemical code PRODIMO to evaluate the incident radiation field in the Jovian gap and the photoevaporation of an embedded 2D axisymmetric CPD. Results. We derive the time-dependent intracluster FUV radiation field for the solar birth cluster over 10 Myr. We find that intracluster photoevaporation can cause significant truncation of the Jovian CPD. We determine steady-state truncation radii for possible CPDs, finding that the outer radius is proportional to the accretion rate Ṁ0.4. For CPD accretion rates Ṁ < 10−12M⊙ yr−1, photoevaporative truncation explains the lack of additional satellites outside the orbit of Callisto. For CPDs of mass MCPD < 10−6.2M⊙, photoevaporation can disperse the disk before Callisto is able to migrate into the Laplace resonance. This explains why Callisto is the only massive satellite that is excluded from the resonance.


Icarus ◽  
2007 ◽  
Vol 190 (2) ◽  
pp. 594-607 ◽  
Author(s):  
B NOYELLES ◽  
A VIENNE
Keyword(s):  

1942 ◽  
Vol 7 (1) ◽  
pp. 39-50
Author(s):  
D Martin

1. Introduction. The problem of extending Dirac's equation of the electron to general relativity has been attacked by many authors, by methods which fall roughly into either of two classes according as the formulation does or does not require the introduction of a local Galilean system of coordinates at each point of space-time. As examples of the former class we mention the methods of Fock (1929) and of Cartan (1938), and as representing the latter class the method described by Ruse (1937). Also, Whittaker (1937) discovered a vector whose vanishing is completely equivalent to the Dirac equations, but this method, unlike the others in the second category, does not apply the Riemannian technique to spinors but only to vectors and tensors derived from these. Now Cartan has denied the possibility of fitting a spinor into Riemannian Geometry if his point of view of spinors is adhered to, and this he argues accounts for the “choquant” properties with which they have been endowed by the geometricians in order to enable them to write down an expression of the usual form for the covariant derivative of a spinor. Consequently, doubt has been cast on the compatibility of the various methods, so in this paper an attempt is made to clarify the matter by working out explicitly the case of the general metric by some of the more important of these methods.


Sign in / Sign up

Export Citation Format

Share Document