ductility minimum
Recently Published Documents


TOTAL DOCUMENTS

10
(FIVE YEARS 0)

H-INDEX

6
(FIVE YEARS 0)

2017 ◽  
Vol 84 (2) ◽  
pp. 49-57 ◽  
Author(s):  
B. Grzegorczyk ◽  
W. Ozgowicz

Purpose: This work presents the influence of chemical composition and plastic deformation temperature of CuCoNi and CuCoNiB as well as CuCo2 and CuCo2B alloys on the structure, mechanical properties and, especially on the inter-crystalline brittleness phenomenon and ductility minimum temperature effect in tensile testing with strain rate of 1.2·10-3 s-1 in the range from 20°C to 800°C. Design/methodology/approach: The tensile test of the investigated copper alloys was realized in the temperature range of 20-800°C with a strain rate of 1.2·10-3 s–1 on the universal testing machine. Metallographic observations of the structure were carried out on a light microscope and the fractographic investigation of fracture on an electron scanning microscope. Findings: Low-alloy copper alloys such as CuCo2 and CuCo2B as well as CuCoNi and CuCoNiB show a phenomenon of minimum plasticity at tensile testing in plastic deforming temperature respectively from 500°C to 700°C for CuCo2, from 450°C to 600°C for CuCo2B and from 450°C to 600°C for CuCo2B and from 500°C to 600°C for CuCoNiB. Practical implications: In result of tensile tests of copper alloys it has been found that the ductility minimum temperature of the alloys equals to about 500°C. At the temperature of stretching of about 450°C the investigated copper alloys show maximum strength values. Originality/value: Based on the test results the temperature range for decreased plasticity of CuCoNi and CuCoNiB as well as CuCo2 and CuCo2B alloys was specified. This brittleness is a result of decreasing plasticity in a determined range of temperatures of deforming called the ductility minimum temperature.


2005 ◽  
Vol 162-163 ◽  
pp. 379-384 ◽  
Author(s):  
R. Nowosielski ◽  
P. Sakiewicz ◽  
P. Gramatyka

1984 ◽  
Vol 18 (9) ◽  
pp. 933-937 ◽  
Author(s):  
Arun S. Wagh ◽  
Leonard N. Ezegbunam

1984 ◽  
Vol 39 ◽  
Author(s):  
A. I. Taub ◽  
S. C. Huang ◽  
K. M. Chang

ABSTRACTThe elevated temperature mechanical properties of rapidly solidified, boron doped Ni3Al have been investigated. Melt spun ribbon, plasma deposits and HIP'ped powder were tested with the same general results. It was found that the boron doped, rapidly solidified alloy exhibits an increasing flow stress with increasing temperature similar to that reported for conventionally cast Ni3Al. In addition, the rapidly solidified alloys exhibited a severe ductility minimum in the range 500–750C. The ductility minimum is relatively insensitive to both boron and aluminum concentration, but the embrittlement onset temperature changes with processing and testing parameters. In all cases, the onset of the ductility drop coincides with the onset of the decrease of the flow stress. It is postulated that this behavior is due to a change in the flow mechanism at elevated temperature to one that is associated with grain boundary stress concentration.


1972 ◽  
Vol 3 (8) ◽  
pp. 2235-2240 ◽  
Author(s):  
M. A. Arkoosh ◽  
N. F. Fiore

Sign in / Sign up

Export Citation Format

Share Document