rank factorization
Recently Published Documents


TOTAL DOCUMENTS

55
(FIVE YEARS 21)

H-INDEX

9
(FIVE YEARS 2)

Author(s):  
Alberto De Marchi

AbstractThis paper introduces QPDO, a primal-dual method for convex quadratic programs which builds upon and weaves together the proximal point algorithm and a damped semismooth Newton method. The outer proximal regularization yields a numerically stable method, and we interpret the proximal operator as the unconstrained minimization of the primal-dual proximal augmented Lagrangian function. This allows the inner Newton scheme to exploit sparse symmetric linear solvers and multi-rank factorization updates. Moreover, the linear systems are always solvable independently from the problem data and exact linesearch can be performed. The proposed method can handle degenerate problems, provides a mechanism for infeasibility detection, and can exploit warm starting, while requiring only convexity. We present details of our open-source C implementation and report on numerical results against state-of-the-art solvers. QPDO proves to be a simple, robust, and efficient numerical method for convex quadratic programming.


2021 ◽  
Vol 68 (1) ◽  
Author(s):  
Dina Tantawy ◽  
Mohamed Zahran ◽  
Amr Wassal

AbstractSince its invention, generative adversarial networks (GANs) have shown outstanding results in many applications. GANs are powerful, yet resource-hungry deep learning models. The main difference between GANs and ordinary deep learning models is the nature of their output and training instability. For example, GANs output can be a whole image versus other models detecting objects or classifying images. Thus, the architecture and numeric precision of the network affect the quality and speed of the solution. Hence, accelerating GANs is pivotal. Data transfer is considered the main source of energy consumption, that is why memory compression is a very efficient technique to accelerate and optimize GANs. Two main types of memory compression exist: lossless and lossy ones. Lossless compression techniques are general among all models; thus, we will focus in this paper on lossy techniques. Lossy compression techniques are further classified into (a) pruning, (b) knowledge distillation, (c) low-rank factorization, (d) lowering numeric precision, and (e) encoding. In this paper, we survey lossy compression techniques for CNN-based GANs. Our findings showed the superiority of knowledge distillation over pruning alone and the gaps in the research field that needs to be explored like encoding and different combination of compression techniques.


Informatics ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 77
Author(s):  
Ali Alqahtani ◽  
Xianghua Xie ◽  
Mark W. Jones

Deep networks often possess a vast number of parameters, and their significant redundancy in parameterization has become a widely-recognized property. This presents significant challenges and restricts many deep learning applications, making the focus on reducing the complexity of models while maintaining their powerful performance. In this paper, we present an overview of popular methods and review recent works on compressing and accelerating deep neural networks. We consider not only pruning methods but also quantization methods, and low-rank factorization methods. This review also intends to clarify these major concepts, and highlights their characteristics, advantages, and shortcomings.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Mario Motta ◽  
Erika Ye ◽  
Jarrod R. McClean ◽  
Zhendong Li ◽  
Austin J. Minnich ◽  
...  

AbstractThe quantum simulation of quantum chemistry is a promising application of quantum computers. However, for N molecular orbitals, the $${\mathcal{O}}({N}^{4})$$ O ( N 4 ) gate complexity of performing Hamiltonian and unitary Coupled Cluster Trotter steps makes simulation based on such primitives challenging. We substantially reduce the gate complexity of such primitives through a two-step low-rank factorization of the Hamiltonian and cluster operator, accompanied by truncation of small terms. Using truncations that incur errors below chemical accuracy allow one to perform Trotter steps of the arbitrary basis electronic structure Hamiltonian with $${\mathcal{O}}({N}^{3})$$ O ( N 3 ) gate complexity in small simulations, which reduces to $${\mathcal{O}}({N}^{2})$$ O ( N 2 ) gate complexity in the asymptotic regime; and unitary Coupled Cluster Trotter steps with $${\mathcal{O}}({N}^{3})$$ O ( N 3 ) gate complexity as a function of increasing basis size for a given molecule. In the case of the Hamiltonian Trotter step, these circuits have $${\mathcal{O}}({N}^{2})$$ O ( N 2 ) depth on a linearly connected array, an improvement over the $${\mathcal{O}}({N}^{3})$$ O ( N 3 ) scaling assuming no truncation. As a practical example, we show that a chemically accurate Hamiltonian Trotter step for a 50 qubit molecular simulation can be carried out in the molecular orbital basis with as few as 4000 layers of parallel nearest-neighbor two-qubit gates, consisting of fewer than 105 non-Clifford rotations. We also apply our algorithm to iron–sulfur clusters relevant for elucidating the mode of action of metalloenzymes.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
William J. Huggins ◽  
Jarrod R. McClean ◽  
Nicholas C. Rubin ◽  
Zhang Jiang ◽  
Nathan Wiebe ◽  
...  

AbstractVariational algorithms are a promising paradigm for utilizing near-term quantum devices for modeling electronic states of molecular systems. However, previous bounds on the measurement time required have suggested that the application of these techniques to larger molecules might be infeasible. We present a measurement strategy based on a low-rank factorization of the two-electron integral tensor. Our approach provides a cubic reduction in term groupings over prior state-of-the-art and enables measurement times three orders of magnitude smaller than those suggested by commonly referenced bounds for the largest systems we consider. Although our technique requires execution of a linear-depth circuit prior to measurement, this is compensated for by eliminating challenges associated with sampling nonlocal Jordan–Wigner transformed operators in the presence of measurement error, while enabling a powerful form of error mitigation based on efficient postselection. We numerically characterize these benefits with noisy quantum circuit simulations for ground-state energies of strongly correlated electronic systems.


Geophysics ◽  
2021 ◽  
pp. 1-102
Author(s):  
Mengmeng Yang ◽  
Marie Graff ◽  
Rajiv Kumar ◽  
Felix J. Herrmann

Subsurface-offset gathers play an increasingly important role in seismic imaging. These gathers are used during velocity model building and inversion of rock properties from amplitude variations. While powerful, these gathers come with high computational and storage demands to form and manipulate these high-dimensional objects. This explains why only limited numbers of image gathers are computed over a limited offset range. We avoid these high costs by working with highly compressed low-rank factorizations. These factorizations are obtained via a combination of probings with the double two-way wave equation and randomized singular value decompositions. In turn, the resulting factorizations give us access to all subsurface offsets without having to form the full extended image volumes which are at best quadratic in image size. As a result, we can easily handle situations where conventional horizontal offset gathers are no longer focused. More importantly, the factorization also provides a mechanism to use the invariance relation of extended image volumes for velocitycontinuation. With this technique, extended image volumes for one background velocity model can be directly mapped to those of another background velocity model. The proposed low-rank factorization inherits this invariance property, so that factorization costs arise only once when examining different imaging scenarios. Because all imaging experiments only involve the factors, they are computationally efficient with costs that scale with the rank of the factorization. Examples using 2D synthetics, including a challenging imaging example with salt, validate the methodology. Instead of brute force explicit cross-correlations betweenshifted source and receiver wavefields, our approach relies on the underlying linear-algebra structure that enables us to work with these objects without incurring unfeasible demands on computation and storage.


2021 ◽  
Vol 11 (2) ◽  
pp. 725
Author(s):  
Chanhee Lee ◽  
Young-Bum Kim ◽  
Hyesung Ji ◽  
Yeonsoo Lee ◽  
Yuna Hur ◽  
...  

In this paper, we show that parameters of a neural network can have redundancy in their ranks, both theoretically and empirically. When viewed as a function from one space to another, neural networks can exhibit feature correlation and slower training due to this redundancy. Motivated by this, we propose a novel regularization method to reduce the redundancy in the rank of parameters. It is a combination of an objective function that makes the parameter rank-deficient and a dynamic low-rank factorization algorithm that gradually reduces the size of this parameter by fusing linearly dependent vectors together. This regularization-by-pruning approach leads to a neural network with better training dynamics and fewer trainable parameters. We also present experimental results that verify our claims. When applied to a neural network trained to classify images, this method provides statistically significant improvement in accuracy and 7.1 times speedup in terms of number of steps required for training. Furthermore, this approach has the side benefit of reducing the network size, which led to a model with 30.65% fewer trainable parameters.


Sign in / Sign up

Export Citation Format

Share Document