scholarly journals Local and remote wind stress forcing of the seasonal variability of the Atlantic Meridional Overturning Circulation (AMOC) transport at 26.5°N

2015 ◽  
Vol 120 (4) ◽  
pp. 2488-2503 ◽  
Author(s):  
Jiayan Yang
Ocean Science ◽  
2021 ◽  
Vol 17 (1) ◽  
pp. 265-284
Author(s):  
Josefine Herrford ◽  
Peter Brandt ◽  
Torsten Kanzow ◽  
Rebecca Hummels ◽  
Moacyr Araujo ◽  
...  

Abstract. Bottom pressure observations on both sides of the Atlantic basin, combined with satellite measurements of sea level anomalies and wind stress data, are utilized to estimate variations of the Atlantic Meridional Overturning Circulation (AMOC) at 11∘ S. Over the period 2013–2018, the AMOC and its components are dominated by seasonal variability, with peak-to-peak amplitudes of 12 Sv for the upper-ocean geostrophic transport, 7 Sv for the Ekman and 14 Sv for the AMOC transport. The characteristics of the observed seasonal cycles of the AMOC and its components are compared to results from an ocean general circulation model, which is known to reproduce the variability of the Western Boundary Current on longer timescales. The observed seasonal variability of zonally integrated geostrophic velocity in the upper 300 m is controlled by pressure variations at the eastern boundary, while at 500 m depth contributions from the western and eastern boundaries are similar. The model tends to underestimate the seasonal pressure variability at 300 and 500 m depth, especially at the western boundary, which translates into the estimate of the upper-ocean geostrophic transport. In the model, seasonal AMOC variability at 11∘ S is governed, besides the Ekman transport, by the geostrophic transport variability in the eastern basin. The geostrophic contribution of the western basin to the seasonal cycle of the AMOC is instead comparably weak, as transport variability in the western basin interior related to local wind curl forcing is mainly compensated by the Western Boundary Current. Our analyses indicate that while some of the uncertainties of our estimates result from the technical aspects of the observational strategy or processes not being properly represented in the model, uncertainties in the wind forcing are particularly relevant for the resulting uncertainties of AMOC estimates at 11∘ S.


2017 ◽  
Vol 122 (6) ◽  
pp. 4518-4538 ◽  
Author(s):  
Pedro Vélez-Belchí ◽  
M. Dolores Pérez-Hernández ◽  
María Casanova-Masjoan ◽  
Luis Cana ◽  
Alonso Hernández-Guerra

Eos ◽  
2022 ◽  
Vol 103 ◽  
Author(s):  
Jack Lee

Simulations reveal the influence of reduced and enhanced wind stress on the Atlantic Meridional Overturning Circulation.


2011 ◽  
Vol 24 (7) ◽  
pp. 1965-1984 ◽  
Author(s):  
Olivier Arzel ◽  
Matthew H. England ◽  
Oleg A. Saenko

Abstract Recent results based on models using prescribed surface wind stress forcing have suggested that the net freshwater transport Σ by the Atlantic meridional overturning circulation (MOC) into the Atlantic basin is a good indicator of the multiple-equilibria regime. By means of a coupled climate model of intermediate complexity, this study shows that this scalar Σ cannot capture the connection between the properties of the steady state and the impact of the wind stress feedback on the evolution of perturbations. This implies that, when interpreting the observed value of Σ, the position of the present-day climate is systematically biased toward the multiple-equilibria regime. The results show, however, that the stabilizing influence of the wind stress feedback on the MOC is restricted to a narrow window of freshwater fluxes, located in the vicinity of the state characterized by a zero freshwater flux divergence over the Atlantic basin. If the position of the present-day climate is farther away from this state, then wind stress feedbacks are unable to exert a persistent effect on the modern MOC. This is because the stabilizing influence of the shallow reverse cell situated south of the equator during the off state rapidly dominates over the destabilizing influence of the wind stress feedback when the freshwater forcing gets stronger. Under glacial climate conditions by contrast, a weaker sensitivity with an opposite effect is found. This is ultimately due to the relatively large sea ice extent of the glacial climate, which implies that, during the off state, the horizontal redistribution of fresh waters by the subpolar gyre does not favor the development of a thermally direct MOC as opposed to the modern case.


2017 ◽  
Vol 30 (6) ◽  
pp. 2029-2054 ◽  
Author(s):  
Shane Elipot ◽  
Eleanor Frajka-Williams ◽  
Chris W. Hughes ◽  
Sofia Olhede ◽  
Matthias Lankhorst

Abstract The response of the North Atlantic meridional overturning circulation (MOC) to wind stress forcing is investigated from an observational standpoint, using four time series of overturning transports below and relative to 1000 m, overlapping by 3.6 yr. These time series are derived from four mooring arrays located on the western boundary of the North Atlantic: the RAPID Western Atlantic Variability Experiment (WAVE) array (42.5°N), the Woods Hole Oceanographic Institution Line W array (39°N), RAPID–MOC/MOCHA (26.5°N), and the Meridional Overturning Variability Experiment (MOVE) array (16°N). Using modal decompositions of the analytic cross-correlation between transports and wind stress, the basin-scale wind stress is shown to significantly drive the MOC coherently at four latitudes, on the time scales available for this study. The dominant mode of covariance is interpreted as rapid barotropic oceanic adjustments to wind stress forcing, eventually forming two counterrotating Ekman overturning cells centered on the tropics and subtropical gyre. A second mode of covariance appears related to patterns of wind stress and wind stress curl associated with the North Atlantic Oscillation, spinning anomalous horizontal circulations that likely interact with topography to form overturning cells.


2020 ◽  
Author(s):  
Josefine Herrford ◽  
Peter Brandt ◽  
Torsten Kanzow ◽  
Rebecca Hummels ◽  
Moacyr Araujo ◽  
...  

Abstract. Bottom pressure observations on both sides of the Atlantic basin, combined with satellite measurements of sea level anomalies and wind stress data, are utilized to estimate variations of the Atlantic Meridional Overturning Circulation (AMOC) at 11° S. Over the period 2013–2018, the AMOC and its components are dominated by seasonal variability, with peak-to-peak amplitudes of 12 Sv for the upper-ocean geostrophic transport, 7 Sv for the Ekman and 14 Sv for the AMOC transport. The observed seasonal cycles of the AMOC, its components as well as the Western Boundary Current as observed with current meter moorings are in general good agreement with results of an ocean general circulation model. The seasonal variability of zonally integrated geostrophic velocity in the upper 300 m is controlled by pressure variations at the eastern boundary, while at 500 m depth contributions from the western and eastern boundaries are similar. The model tends to underestimate the seasonal pressure variability at 300 and 500 m depth, slightly stronger at the western boundary. In the model, seasonal AMOC variability at 11° S is governed by the variability in the eastern basin. Here, long Rossby waves originating from equatorial forcing are known to be radiated from the Angolan continental slope and propagate westward into the basin interior. The contribution of the western basin to AMOC seasonal variability is instead comparably weak as transport variability due to locally forced Rossby waves is mainly compensated by the Western Boundary Current. Our analyses indicate, that while some of the uncertainties of our estimates result from the technical aspects of the observational strategy or processes being not properly represented in the model, uncertainties in the wind forcing are particularly relevant for AMOC estimates at 11° S.


Sign in / Sign up

Export Citation Format

Share Document