scholarly journals Global representation of aerosol vertical profiles by sums of lognormal modes: Consequences for the passive remote sensing of aerosol heights

2014 ◽  
Vol 119 (14) ◽  
pp. 8899-8907 ◽  
Author(s):  
A. Hollstein ◽  
F. Filipitsch
2017 ◽  
Vol 68 (4) ◽  
pp. 873-878
Author(s):  
Alexandru Dandocsi ◽  
Anca Nemuc ◽  
Cristina Marin ◽  
Simona Andrei

An intensive measurement campaign was performed during September 2014 in southern Romania in two different locations: Magurele, Ilfov County and Turceni, Gorj County. This paper presents one case study with analysis of the aerosol properties from in-situ, passive remote sensing and active remote sensing measurements. A Multiwavelength Raman Lidar (RALI) provided one hour averaged vertical profiles of extinction and backscatter from the 532 nm and 1064 nm channels in Magurele. The UV scanning Lidar (MILI) provided one hour averaged backscattered and extinction vertical profiles for Turceni. Planetary Boundary Layer Height (PBLH) was calculated using the altitude of the maximum negative gradient of the range corrected signal. Mass concentrations for different aerosol species (organics, nitrate, sulphate, ammonium and chloride) were obtained from in-situ measurements using Aerosol Mass Spectrometer located in M�gurele and Aerosol Chemical Speciation Monitor (ACSM) located in Turceni.


2008 ◽  
Vol 25 (9) ◽  
pp. 1600-1607 ◽  
Author(s):  
B. Padma Kumari ◽  
S. H. Kulkarni ◽  
D. B. Jadhav ◽  
A. L. Londhe ◽  
H. K. Trimbake

Abstract The instrument twilight photometer was designed, developed, and installed at the Indian Institute of Tropical Meteorology (IITM), Pune, India (18°43′N, 73°51′E), to monitor the vertical distribution of atmospheric aerosols. The instrument, based on passive remote sensing technique, is simple and inexpensive. It is operated only during twilights, and the method of retrieval of aerosol profile is based on a simple twilight technique. It functions at a single wavelength (660 nm), and a photomultiplier tube is used as a detector. The amplifier, an important component of the system, was designed and developed by connecting 10 single integrated-circuit (IC) amplifiers in parallel so that the noise at the output is drastically reduced and the sensitivity of the system has been increased. As a result, the vertical profiles are retrieved to a maximum of 120 km. A brief description of the basic principle of twilight technique, the experimental setup, and the method of retrieval of aerosol profiles using the above photometer are detailed in this paper.


Author(s):  
P. B. Mane

Aerosol measurements have been carried out at Kolhapur (16°42′N, 74°14′E) by using newly designed Semiautomatic Twilight Photometer. The system is a ground based simple and inexpensive but very sensitive passive remote sensing technique. The altitudes of the Junge layer peaks on measurement days were derived from the aerosol vertical profiles. One attempt is made to examine the association between oscillations of the stratospheric aerosol layer peaks and different types of clouds. The values of AND for the Junge layer peaks for each observational day were also calculated. The graph between AND at peak point of Junge layer and day numbers was also studied in comparison with High, Medium and Low level clouds. There is an annual variation in the altitude of the peak of Junge layer also. Its maximum is observed during January. The annual variation of the altitude of the peak of Junge layer and the AND of Junge layer peak showed opposite phase relation.


2010 ◽  
Vol 115 (D17) ◽  
Author(s):  
Zhibo Zhang ◽  
Steven Platnick ◽  
Ping Yang ◽  
Andrew K. Heidinger ◽  
Jennifer M. Comstock

Sensors ◽  
2009 ◽  
Vol 9 (6) ◽  
pp. 4380-4389 ◽  
Author(s):  
Man Sing Wong ◽  
Janet Nichol ◽  
Kwon Ho Lee

Sign in / Sign up

Export Citation Format

Share Document