scholarly journals To examine the association between oscillations of the stratospheric aerosol layer peaks and different types of clouds

Author(s):  
P. B. Mane

Aerosol measurements have been carried out at Kolhapur (16°42′N, 74°14′E) by using newly designed Semiautomatic Twilight Photometer. The system is a ground based simple and inexpensive but very sensitive passive remote sensing technique. The altitudes of the Junge layer peaks on measurement days were derived from the aerosol vertical profiles. One attempt is made to examine the association between oscillations of the stratospheric aerosol layer peaks and different types of clouds. The values of AND for the Junge layer peaks for each observational day were also calculated. The graph between AND at peak point of Junge layer and day numbers was also studied in comparison with High, Medium and Low level clouds. There is an annual variation in the altitude of the peak of Junge layer also. Its maximum is observed during January. The annual variation of the altitude of the peak of Junge layer and the AND of Junge layer peak showed opposite phase relation.

2008 ◽  
Vol 25 (9) ◽  
pp. 1600-1607 ◽  
Author(s):  
B. Padma Kumari ◽  
S. H. Kulkarni ◽  
D. B. Jadhav ◽  
A. L. Londhe ◽  
H. K. Trimbake

Abstract The instrument twilight photometer was designed, developed, and installed at the Indian Institute of Tropical Meteorology (IITM), Pune, India (18°43′N, 73°51′E), to monitor the vertical distribution of atmospheric aerosols. The instrument, based on passive remote sensing technique, is simple and inexpensive. It is operated only during twilights, and the method of retrieval of aerosol profile is based on a simple twilight technique. It functions at a single wavelength (660 nm), and a photomultiplier tube is used as a detector. The amplifier, an important component of the system, was designed and developed by connecting 10 single integrated-circuit (IC) amplifiers in parallel so that the noise at the output is drastically reduced and the sensitivity of the system has been increased. As a result, the vertical profiles are retrieved to a maximum of 120 km. A brief description of the basic principle of twilight technique, the experimental setup, and the method of retrieval of aerosol profiles using the above photometer are detailed in this paper.


2017 ◽  
Vol 68 (4) ◽  
pp. 873-878
Author(s):  
Alexandru Dandocsi ◽  
Anca Nemuc ◽  
Cristina Marin ◽  
Simona Andrei

An intensive measurement campaign was performed during September 2014 in southern Romania in two different locations: Magurele, Ilfov County and Turceni, Gorj County. This paper presents one case study with analysis of the aerosol properties from in-situ, passive remote sensing and active remote sensing measurements. A Multiwavelength Raman Lidar (RALI) provided one hour averaged vertical profiles of extinction and backscatter from the 532 nm and 1064 nm channels in Magurele. The UV scanning Lidar (MILI) provided one hour averaged backscattered and extinction vertical profiles for Turceni. Planetary Boundary Layer Height (PBLH) was calculated using the altitude of the maximum negative gradient of the range corrected signal. Mass concentrations for different aerosol species (organics, nitrate, sulphate, ammonium and chloride) were obtained from in-situ measurements using Aerosol Mass Spectrometer located in M�gurele and Aerosol Chemical Speciation Monitor (ACSM) located in Turceni.


2021 ◽  
Author(s):  
Felix Wrana ◽  
Christian von Savigny ◽  
Larry W. Thomason

<p>We present surprising results of our stratospheric aerosol size retrieval which is using the SAGE III/ISS solar occultation measurements, that started in 2017. Due to the broad wavelength spectrum covered by the instrument a robust retrieval of the median radius, mode width and number density of monomodal lognormal size distributions is possible.</p><p>In the timeframe of SAGE III’s operation so far three small to mid intensity volcanic eruptions that reached and perturbed the stratospheric aerosol layer were observed by the instrument: The Ambae eruptions (15.3°S) in spring of 2018 and the Raikoke (48.3°N) and Ulawun (5.05°S) eruptions, both in June 2019. While the Raikoke eruption led to an increase in the median radius of the stratospheric aerosols, which was to be expected and is in line with previous observations, the Ambae and Ulawun eruption had a different effect. After both eruptions the average aerosol size decreased, with lower median radii and narrower size distributions, while the number density increased strongly. The observation, that volcanic eruptions may lead to smaller average stratospheric aerosol sizes is a novel one and should be of great interest to the modeling as well as remote sensing community.</p><p>We will present the temporal and spatial evolution of the stratospheric perturbations and discuss what may distinguish those three eruptions from each other.</p>


2016 ◽  
Author(s):  
Alexandra Tsekeri ◽  
Vassilis Amiridis ◽  
Franco Marenco ◽  
Athanasios Nenes ◽  
Eleni Marinou ◽  
...  

Abstract. We present the In-situ/Remote sensing aerosol Retrieval Algorithm (IRRA) that combines airborne in-situ and lidar remote sensing data to retrieve vertical profiles of ambient aerosol optical, microphysical and hygroscopic properties, employing the ISORROPIA II model for acquiring the hygroscopic growth. Here we apply the algorithm on data collected from the Facility for Airborne Atmospheric Measurements (FAAM) BAe-146 research aircraft during the ACEMED campaign in Eastern Mediterranean: vertical profiles of aerosol microphysical properties have been derived successfully for an aged smoke plume near the city of Thessaloniki with typical lidar ratios of ~ 60–80 sr at 532 nm, along with single scattering albedos of ~ 0.9–0.95 at 550 nm. The aerosol layer reaches the 3.5 km with aerosol optical depth at ~ 0.4 at 532 nm. Our analysis shows that the smoke particles are highly hydrated above land, with 55 % and 80 % water volume content for ambient relative humidity of 80 % and 90 %, respectively. The proposed methodology is highly advantageous for aerosol characterization in humid conditions and can find valuable applications in aerosol-cloud interaction schemes. Moreover, it can be used for the validation of active space-borne sensors, as is demonstrated here for the case of CALIPSO.


2005 ◽  
Vol 5 (2) ◽  
pp. 345-355 ◽  
Author(s):  
F. Immler ◽  
D. Engelbart ◽  
O. Schrems

Abstract. With a lidar system that was installed in Lindenberg/Germany, we observed in June 2003 an extended aerosol layer at 13km altitude in the lowermost stratosphere. This layer created an inelastic backscatter signal that we detected with a water vapour Raman channel, but that was not produced by Raman scattering. Also, we find evidence for inelastic scattering from a smoke plume from a forest fire that we observed in the troposphere. We interpret the unexpected properties of these aerosols as fluorescence induced by the laser beam at organic components of the aerosol particles. Fluorescence from ambient aerosol had not yet been considered detectable by lidar systems. However, organic compounds such as polycyclic aromatic hydrocarbons sticking to the aerosol particles, or bioaerosol such as bacteria, spores or pollen fluoresce when excited with UV-radiation in a way that is detectable by our lidar system. Therefore, we conclude that fluorescence from organic material released by biomass burning creates, inelastic backscatter signals that we measured with our instrument and thus demonstrate a new and powerful way to characterize aerosols by a remote sensing technique. The stratospheric aerosol layer that we have observed in Lindenberg for three consecutive days is likely to be a remnant from Siberian forest fire plumes lifted across the tropopause and transported around the globe.


2016 ◽  
Vol 43 (16) ◽  
pp. 8783-8790 ◽  
Author(s):  
Lianghai Wu ◽  
Otto Hasekamp ◽  
Bastiaan van Diedenhoven ◽  
Brian Cairns ◽  
John E. Yorks ◽  
...  

2004 ◽  
Vol 4 (5) ◽  
pp. 5831-5854 ◽  
Author(s):  
F. Immler ◽  
D. Engelbart ◽  
O. Schrems

Abstract. With a lidar system that was installed in Lindenberg/Germany, we observed in June 2003, an extended aerosol layer at 13 km altitude in the lowermost stratosphere. This layer created an inelastic backscatter signal which we interpret as laser induced fluorescence from aerosol particles. Also, we find evidence for inelastic scattering in a smoke plume from a forest fire that we observed in the troposphere. Fluorescence from ambient aerosol had not yet been considered detectable by lidar. However, organic compounds such as polycyclic aromatic hydrocarbons sticking to the aerosol particles, or bioaerosol such as bacteria, spores or pollen fluoresce when excited with UV-radiation in a way that is detectable by our lidar system. Therefore, we conclude that fluorescence from organic material released by biomass burning creates the inelastic backscatter signal that we measured with our instrument and thus demonstrate a new and powerful way to characterize aerosols by a remote sensing technique. The stratospheric aerosol layer that we have observed in Lindenberg for three consecutive days is likely to be a remnant from Siberian forest fire plumes lifted across the tropopause and transported around the globe.


Sign in / Sign up

Export Citation Format

Share Document