scholarly journals Estimating the vector electric field using monostatic, multibeam incoherent scatter radar measurements

Radio Science ◽  
2014 ◽  
Vol 49 (11) ◽  
pp. 1124-1139 ◽  
Author(s):  
Michael J. Nicolls ◽  
Russell Cosgrove ◽  
Hasan Bahcivan
2017 ◽  
Vol 3 (3) ◽  
pp. 76-81
Author(s):  
Дмитрий Кушнарев ◽  
Dmitriy Kushnarev ◽  
Валентин Лебедев ◽  
Valentin Lebedev ◽  
Виталий Хахинов ◽  
...  

We present the results of modernization of the Irkutsk Incoherent Scatter Radar’s control and acquisition system. The modernization was carried out using results of space experiments Plasma–Progress and Radar–Progress involving Progress cargo spacecraft. The modernization has improved the accuracy of radar measurements of low-orbit spacecraft. For example, with a signal-to-noise ratio equal to10, the accuracy of range and angle measurements is 100–300 m and 1–5 arc min.


2016 ◽  
Vol 9 (4) ◽  
pp. 1859-1869 ◽  
Author(s):  
Johannes Norberg ◽  
Ilkka I. Virtanen ◽  
Lassi Roininen ◽  
Juha Vierinen ◽  
Mikko Orispää ◽  
...  

Abstract. We validate two-dimensional ionospheric tomography reconstructions against EISCAT incoherent scatter radar measurements. Our tomography method is based on Bayesian statistical inversion with prior distribution given by its mean and covariance. We employ ionosonde measurements for the choice of the prior mean and covariance parameters and use the Gaussian Markov random fields as a sparse matrix approximation for the numerical computations. This results in a computationally efficient tomographic inversion algorithm with clear probabilistic interpretation. We demonstrate how this method works with simultaneous beacon satellite and ionosonde measurements obtained in northern Scandinavia. The performance is compared with results obtained with a zero-mean prior and with the prior mean taken from the International Reference Ionosphere 2007 model. In validating the results, we use EISCAT ultra-high-frequency incoherent scatter radar measurements as the ground truth for the ionization profile shape. We find that in comparison to the alternative prior information sources, ionosonde measurements improve the reconstruction by adding accurate information about the absolute value and the altitude distribution of electron density. With an ionosonde at continuous disposal, the presented method enhances stand-alone near-real-time ionospheric tomography for the given conditions significantly.


2013 ◽  
Vol 31 (7) ◽  
pp. 1163-1176 ◽  
Author(s):  
R. A. Makarevich ◽  
A. V. Koustov ◽  
M. J. Nicolls

Abstract. A comprehensive 2-year dataset collected with the Poker Flat Incoherent Scatter Radar (PFISR) located near Fairbanks, Alaska (MLAT = 65.4° N) is employed to identify and analyse 22 events of anomalous electron heating (AEH) in the auroral E region. The overall AEH occurrence probability is conservatively estimated to be 0.3% from nearly-continuous observations of the E region by PFISR, although it increases to 0.7–0.9% in the dawn and dusk sectors where all AEH events were observed. The AEH occurrence variation with MLT is broadly consistent with those of events with high convection velocity (>1000 m s−1) or electron temperature (> 800 K), except for much smaller AEH probability and absence of AEH events near magnetic midnight. This suggests that high convection electric field by itself is necessary but not sufficient for measurable electron heating by two-stream plasma waves. The multi-point observations are utilised to investigate the fundamental dependence of the electron temperature on the convection electric field, focusing on the previously-proposed saturation effects at extreme electric fields. The AEH dataset was found to exhibit considerable scatter and, on average, similar rate of the electron temperature increase with the electric field up to 100 mV m−1 as compared with previous studies. At higher (highest) electric fields, the electron temperatures are below the linear trend on average (within uncertainty). By employing a simple fluid model of AEH, it is demonstrated that some of this deviation from the linear trend may be due to a stronger vibrational cooling at very large temperatures and electric fields.


Sign in / Sign up

Export Citation Format

Share Document