angle measurements
Recently Published Documents


TOTAL DOCUMENTS

1483
(FIVE YEARS 356)

H-INDEX

60
(FIVE YEARS 7)

2022 ◽  
Author(s):  
Svetlana Butylina ◽  
Krista Koljonen ◽  
Salla Hiltunen ◽  
Katri Laatikainen

Abstract Valorisation of bio-based materials derived from agricultural and industrial side-streams or waste-streams is a basis of circular economy. However, the success of it depends on the full understanding of materials and finding their optimal way of processing. Barley husk is a side-stream waste material derived from the starch and ethanol production. This study is focused on the processability of the arabinoxylan extracted from barley husk using the electrospinning technique to produce thin xylan-poly(vinyl alcohol) fibers. As a comparison, lignin-free xylan of beech wood was used. The properties of spinning solutions and resulting nanofibrous mats were assessed by using rheological measurements, FTIR spectroscopy, scanning electron microscopy and contact angle measurements. It was found that solubility plays a crucial role in the spinnability of xylan extracts. Decrease in viscosity of arabinoxylan achieved by decreasing its concentration was found to improve the jet stability but at the same time, to reduce the diameter of spun fibre. Hydrophilicity of nanofibrous mats were strongly affected by the type of xylan and solvent used.


Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 253
Author(s):  
Mariusz Gadzinowski ◽  
Maciej Kasprów ◽  
Teresa Basinska ◽  
Stanislaw Slomkowski ◽  
Łukasz Otulakowski ◽  
...  

In this paper, an original method of synthesis of coil–brush amphiphilic polystyrene-b-(polyglycidol-g-polyglycidol) (PS-b-(PGL-g-PGL)) block copolymers was developed. The hypothesis that their hydrophilicity and micellization can be controlled by polyglycidol blocks architecture was verified. The research enabled comparison of behavior in water of PS-b-PGL copolymers and block–brush copolymers PS-b-(PGL-g-PGL) with similar composition. The coil–brush copolymers were composed of PS-b-PGL linear core with average DPn of polystyrene 29 and 13 of polyglycidol blocks. The DPn of polyglycidol side blocks of coil–b–brush copolymers were 2, 7, and 11, respectively. The copolymers were characterized by 1H and 13C NMR, GPC, and FTIR methods. The hydrophilicity of films from the linear and coil–brush copolymers was determined by water contact angle measurements in static conditions. The behavior of coil–brush copolymers in water and their critical micellization concentration (CMC) were determined by UV-VIS using 1,6-diphenylhexa-1,3,5-trien (DPH) as marker and by DLS. The CMC values for brush copolymers were much higher than for linear species with similar PGL content. The results of the copolymer film wettability and the copolymer self-assembly studies were related to fraction of hydrophilic polyglycidol. The CMC for both types of polymers increased exponentially with increasing content of polyglycidol.


PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0257963
Author(s):  
John G. Yuen ◽  
Amy C. Marshilok ◽  
Peter Todd Benziger ◽  
Shan Yan ◽  
Jeronimo Cello ◽  
...  

In times of crisis, including the current COVID-19 pandemic, the supply chain of filtering facepiece respirators, such as N95 respirators, are disrupted. To combat shortages of N95 respirators, many institutions were forced to decontaminate and reuse respirators. While several reports have evaluated the impact on filtration as a measurement of preservation of respirator function after decontamination, the equally important fact of maintaining proper fit to the users’ face has been understudied. In the current study, we demonstrate the complete inactivation of SARS-CoV-2 and preservation of fit test performance of N95 respirators following treatment with dry heat. We apply scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM/EDS), X-ray diffraction (XRD) measurements, Raman spectroscopy, and contact angle measurements to analyze filter material changes as a consequence of different decontamination treatments. We further compared the integrity of the respirator after autoclaving versus dry heat treatment via quantitative fit testing and found that autoclaving, but not dry heat, causes the fit of the respirator onto the users face to fail, thereby rendering the decontaminated respirator unusable. Our findings highlight the importance to account for both efficacy of disinfection and mask fit when reprocessing respirators to for clinical redeployment.


2022 ◽  
pp. 107-140
Author(s):  
Marcelo de Carvalho Alves ◽  
Luciana Sanches

2022 ◽  
Vol 334 ◽  
pp. 04019
Author(s):  
Karrar Alofari ◽  
Ezequiel Me´dici ◽  
Kazuya Tajiri ◽  
Jeffrey Allen

Percolation testing and contact angle measurements have been used to investigate the role of relative humidity on structure, mass transport, and wettability of a PEM fuel cell catalyst layer and membrane. Four samples were tested, two catalyst layers and two membranes. Structure and mass transport changes in the catalyst layers resulting from RH changes were studied in terms of percolation pressure. A clear change in the structure between low and high RH conditioning was observed. Relative humidity (RH) cycling also impacted percolation pressures with an indication of catalyst layer cracking. In addition, RH effect on wettability of both catalyst layers and membranes was studied by measuring contact angles of sessile drops.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Bo Yang ◽  
Xian Xie ◽  
Xiong Tong ◽  
Lingyun Huang

Terpenic oil (TO) is commonly used as a flotation frother for the selective separation of sulfide minerals. As a frother, most reports have mainly focused on its effect on froth stability and froth entrainment, whereas its influence on the floatability of sulfide minerals has received little attention. In this work, the influence of TO on the flotation behavior of sphalerite was investigated by using microflotation tests, contact angle and zeta potential measurements, and FT-IR and SEM-EDS analyses. Microflotation tests conducted in a modified Hallimond tube indicated that compared with the collector potassium butyl xanthate (KBX), the flotation recovery of sphalerite was significantly increased when TO was added to the pulp, but the recovery of Cu-activated sphalerite with the addition of TO was lower than that with the addition of KBX. Contact angle measurements demonstrated that the contact angle of sphalerite was distinctly increased by the addition of TO, but the contact angle of sphalerite treated with TO was lower than that treated with KBX after Cu activation. Zeta potential measurements demonstrated that the zeta potential of sphalerite particles was slightly decreased when treated with TO, and the isoelectric point (IEP) was decreased from 3.3 to 3.1 due to the interaction of TO with sphalerite particles. FT-IR and SEM-EDS confirmed that TO could be adsorbed on the sphalerite surface on the formation of the oil film due to its low solubility, thereby increasing the surface hydrophobicity of the sphalerite. In addition, the TO absorbed on the surface acts as a bridging role and promotes the hydrophobic agglomeration of sphalerite particles. These results suggest that except for froth entrainment, the influence of TO on the flotation behavior of sphalerite may be another reason for the misreporting of sphalerite in concentrates.


2021 ◽  
Vol 45 (6) ◽  
pp. 439-445
Author(s):  
Ali Bougharouat ◽  
Nassim Touka ◽  
Dalila Talbi ◽  
Kamel Baddari

The adhesive characteristics of sol-gel copper oxide (CuO) film surfaces at annealing temperatures ranging from 350 to 550°C were examined in this work. Hydrophobic properties of these oxide film surfaces were studied by contact angle measurements. The surface energy was calculated from contact angle data using harmonic mean method. The structural, morphological and chemical analysis of the samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared (FTIR). The increase in annealing temperature induces a reduction in the hydrophilic properties of the films (adhesive properties). The rise in the hydrophobicity of the CuO surface has been claimed to be explained by a change in interfacial tension. The FTIR spectroscopy analysis revealed that the increase in the annealing temperature eliminates activated neutral species (hydroxyl groups) reacting with the surface of the sample responsible for the wettability. SEM analysis showed that the morphology of the samples is nanostructured containing agglomerates of various forms, a few hundred nanometers in size, randomly dispersed across the surface. The enhanced roughness of the produced film is primarily responsible for the increased hydrophobicity of the films. The XRD data reveal that the films are highly textured and that increasing the annealing temperature induces better layer crystallization and confirms the development of copper oxide CuO.


Sign in / Sign up

Export Citation Format

Share Document