scholarly journals Modeling geomagnetically induced currents in the South African power transmission network using the finite element method

Space Weather ◽  
2015 ◽  
Vol 13 (3) ◽  
pp. 185-195 ◽  
Author(s):  
Electdom Matandirotya ◽  
Pierre J. Cilliers ◽  
Robert R. Van Zyl
Author(s):  
Mahmood Khalid Hadi

Currently, the use of underground electric cables is a regular feature of present-day power transmission and distribution schemes. Issues related to economical limitations and the lack of adequate space led to the need for cables with an elevated current carrying capacity (ampacity). In order to achieve this objective, public services around the globe are focusing not only on better designs, but also on improving the level of precision in the context of cable parameter values. Precise parameter values are essential for ensuring that the replicated outcomes correspond sufficiently close to actual circumstances. While the conventional approach to ampacity calculation is through the IEC-60287 procedure, the numerical route is considered more specific and flexible. This endeavour harnesses the finite element method to conceive an innovative process for calculating the thermal field and ampacity of a cable. This process involves the crafting of a temperature field distribution model for scrutinizing temperature distribution in the region of an electric cable, and the deployment of the linear interpolation procedure for computing its ampacity. Subsequent to its formation, the model was put into operation on the underground cable 33KV XLPE.


2013 ◽  
Vol 31 (10) ◽  
pp. 1689-1698 ◽  
Author(s):  
B. Dong ◽  
D. W. Danskin ◽  
R. J. Pirjola ◽  
D. H. Boteler ◽  
Z. Z. Wang

Abstract. Geomagnetically induced currents in power systems are due to space weather events which create geomagnetic disturbances accompanied by electric fields at the surface of the Earth. The purpose of this paper is to evaluate the use of the finite element method (FEM) to calculate the magnetic and electric fields to which long transmission lines of power systems on the Earth are exposed. The well-known technique of FEM is used for the first time to simulate magnetic and electric fields applicable to power systems. Several test cases are modelled and compared with known solutions. It is shown that FEM is an effective modelling technique that can be applied to determine the electric fields which affect power systems. FEM enables an increased capability beyond the traditional methods for modelling electric and magnetic fields with layered earth conductivity structures, as spatially more complex structures can be considered using FEM. As an example results are presented for induction, due to a line current source, in adjacent regions with different layered conductivity structures. The results show the electric field away from the interface is the same as calculated for a single region; however near the interface the electric field is influenced by both regions.


Nanoscale ◽  
2019 ◽  
Vol 11 (43) ◽  
pp. 20868-20875 ◽  
Author(s):  
Junxiong Guo ◽  
Yu Liu ◽  
Yuan Lin ◽  
Yu Tian ◽  
Jinxing Zhang ◽  
...  

We propose a graphene plasmonic infrared photodetector tuned by ferroelectric domains and investigate the interfacial effect using the finite element method.


Sign in / Sign up

Export Citation Format

Share Document