Using the Finite Element Method to calculate Parameters for a Detailed Model of Power Transmission Line for Default Diagnosis

Author(s):  
Mabrouki Hichem ◽  
Haj Abdalah Hssan
Author(s):  
Siva P. Gurrum ◽  
Yogendra K. Joshi ◽  
William P. King ◽  
Koneru Ramakrishna

Prediction of the temperature field generated with Joule heating in multilayer interconnect stacks is of critical importance for the design and reliability of future microelectronics. Interconnect failure due to electromigration is strongly dependent on its temperature. Simple models fail to capture thermal interaction between layers and within the layer. Detailed simulations on the other hand, take tremendous time and require large storage. This paper describes a threedimensional compact thermal modeling methodology that captures thermal interactions at a lower computational cost and storage requirements. The method is applicable for arbitrary geometries of interconnects due to the use of the finite element method. Case studies with three interconnects placed on a single level at a pitch of 1.0 μm generating different heat rates are reported. The compact model predicts a temperature rise of 4.11 °C at a current density of 10 MA/cm2 for 6.0 μm long interconnects of 0.18 μm width and an aspect ratio of 2. The error in maximum temperature is about 5% when compared with detailed simulations. The compact model for the current cases consists of 219 nodes whereas the detailed model has 99,000 nodes where temperature is computed.


Author(s):  
Mahmood Khalid Hadi

Currently, the use of underground electric cables is a regular feature of present-day power transmission and distribution schemes. Issues related to economical limitations and the lack of adequate space led to the need for cables with an elevated current carrying capacity (ampacity). In order to achieve this objective, public services around the globe are focusing not only on better designs, but also on improving the level of precision in the context of cable parameter values. Precise parameter values are essential for ensuring that the replicated outcomes correspond sufficiently close to actual circumstances. While the conventional approach to ampacity calculation is through the IEC-60287 procedure, the numerical route is considered more specific and flexible. This endeavour harnesses the finite element method to conceive an innovative process for calculating the thermal field and ampacity of a cable. This process involves the crafting of a temperature field distribution model for scrutinizing temperature distribution in the region of an electric cable, and the deployment of the linear interpolation procedure for computing its ampacity. Subsequent to its formation, the model was put into operation on the underground cable 33KV XLPE.


Sign in / Sign up

Export Citation Format

Share Document