scholarly journals Toward an internal gravity wave spectrum in global ocean models

2015 ◽  
Vol 42 (9) ◽  
pp. 3474-3481 ◽  
Author(s):  
Malte Müller ◽  
Brian K. Arbic ◽  
James G. Richman ◽  
Jay F. Shriver ◽  
Eric L. Kunze ◽  
...  
2019 ◽  
Vol 49 (3) ◽  
pp. 737-749 ◽  
Author(s):  
Carsten Eden ◽  
Friederike Pollmann ◽  
Dirk Olbers

AbstractSpectral energy transfers by internal gravity wave–wave interactions for given empirical energy spectra are evaluated numerically from the kinetic equation that is derived from the assumption of weak interactions. Wave spectrum parameters, such as bandwidth, spectral slope, and Coriolis frequency f, are varied, as is the spectral resolution. In agreement with previous studies, we find in all cases a forward energy cascade toward smaller vertical and horizontal wavelengths. Energy sinks due to the transfers are predominantly at frequencies between 2f and 3f. While the mechanism of the energy transfer differs partly from findings of previous studies, a parameterization for internal wave dissipation—which is used in the fine structure parameterization to estimate dissipation and mixing rates from observations—agrees well with the numerical evaluation of the energy transfers. We also find a dependency of the energy transfers on the spectral slope, offering the possibility to decrease the bias of the fine structure parameterization by improving the knowledge about the spatial variations of this (and other) spectral parameter.


2020 ◽  
Vol 50 (7) ◽  
pp. 1871-1891 ◽  
Author(s):  
Friederike Pollmann

AbstractA key ingredient of energetically consistent ocean models is the parameterized link between small-scale turbulent mixing, an important energy source of large-scale ocean dynamics, and internal gravity wave energetics. Theory suggests that this link depends on the wave field’s spectral characteristics, but because of the paucity of suitable observations, its parameterization typically relies on a model spectrum [Garrett–Munk (GM)] with constant parameters. Building on the so-called “finestructure method,” internal gravity wave spectra are derived from vertical strain profiles obtained from Argo floats to provide a global estimate of the spatial and temporal variability of the GM model’s spectral parameters. For spectral slopes and wavenumber scales, the highest variability and the strongest deviation from the model’s canonical parameters are observed in the North Atlantic, the northwest Pacific, and the Southern Ocean. Internal wave energy levels in the upper ocean are well represented by the GM model value equatorward of approximately 50°, while they are up to two orders of magnitude lower poleward of this latitude. The use of variable spectral parameters in the energy level calculation hides the seasonal cycle in the northwest Pacific that was previously observed for constant parameters. The global estimates of how the GM model’s spectral parameters vary in space and time are hence expected to add relevant detail to various studies on oceanic internal gravity waves, deepening the understanding of their energetics and improving parameterizations of the mixing they induce.


1990 ◽  
Vol 95 (C12) ◽  
pp. 22141 ◽  
Author(s):  
Gerd N. Trulsen ◽  
Kristian B. Dysthe ◽  
Jan Trulsen
Keyword(s):  

1982 ◽  
Vol 119 ◽  
pp. 367-377 ◽  
Author(s):  
J. Klostermeyer

The equations describing parametric instabilities of a finite-amplitude internal gravity wave in an inviscid Boussinesq fluid are studied numerically. By improving the numerical approach, discarding the concept of spurious roots and considering the whole range of directions of the Floquet vector, Mied's work is generalized to its full complexity. In the limit of large disturbance wavenumbers, the unstable disturbances propagate in the directions of the two infinite curve segments of the related resonant-interaction diagram. They can therefore be classified into two families which are characterized by special propagation directions. At high wavenumbers the maximum growth rates converge to limits which do not depend on the direction of the Floquet vector. The limits are different for both families; the disturbance waves propagating at the smaller angle to the basic gravity wave grow at the larger rate.


2021 ◽  
Author(s):  
Ryan Holmes ◽  
Jan Zika ◽  
Stephen Griffies ◽  
Andrew Hogg ◽  
Andrew Kiss ◽  
...  

<p>Numerical mixing, the physically spurious diffusion of tracers due to the numerical discretization of advection, is known to contribute to biases in ocean circulation models. However, quantifying numerical mixing is non-trivial, with most studies utilizing specifically targeted experiments in idealized settings. Here, we present a precise method based on water-mass transformation for quantifying numerical mixing, including its spatial structure, that can be applied to any conserved variable in global general circulation ocean models. The method is applied to a suite of global MOM5 ocean-sea ice model simulations with differing grid spacings and sub-grid scale parameterizations. In all configurations numerical mixing drives across-isotherm heat transport of comparable magnitude to that associated with explicitly-parameterized mixing. Numerical mixing is prominent at warm temperatures in the tropical thermocline, where it is sensitive to the vertical diffusivity and resolution. At colder temperatures, numerical mixing is sensitive to the presence of explicit neutral diffusion, suggesting that much of the numerical mixing in these regions acts as a proxy for neutral diffusion when it is explicitly absent. Comparison of equivalent (with respect to vertical resolution and explicit mixing parameters) 1/4-degree and 1/10-degree horizontal resolution configurations shows only a modest enhancement in numerical mixing at the eddy-permitting 1/4-degree resolution. Our results provide a detailed view of numerical mixing in ocean models and pave the way for future improvements in numerical methods.</p>


2007 ◽  
Vol 64 (5) ◽  
pp. 1509-1529 ◽  
Author(s):  
Nikolaos A. Bakas ◽  
Petros J. Ioannou

Abstract In this paper, the emission of internal gravity waves from a local westerly shear layer is studied. Thermal and/or vorticity forcing of the shear layer with a wide range of frequencies and scales can lead to strong emission of gravity waves in the region exterior to the shear layer. The shear flow not only passively filters and refracts the emitted wave spectrum, but also actively participates in the gravity wave emission in conjunction with the distributed forcing. This interaction leads to enhanced radiated momentum fluxes but more importantly to enhanced gravity wave energy fluxes. This enhanced emission power can be traced to the nonnormal growth of the perturbations in the shear region, that is, to the transfer of the kinetic energy of the mean shear flow to the emitted gravity waves. The emitted wave energy flux increases with shear and can become as large as 30 times greater than the corresponding flux emitted in the absence of a localized shear region. Waves that have horizontal wavelengths larger than the depth of the shear layer radiate easterly momentum away, whereas the shorter waves are trapped in the shear region and deposit their momentum at their critical levels. The observed spectrum, as well as the physical mechanisms influencing the spectrum such as wave interference and Doppler shifting effects, is discussed. While for large Richardson numbers there is equipartition of momentum among a wide range of frequencies, most of the energy is found to be carried by waves having vertical wavelengths in a narrow band around the value of twice the depth of the region. It is shown that the waves that are emitted from the shear region have vertical wavelengths of the size of the shear region.


Sign in / Sign up

Export Citation Format

Share Document