energy transfers
Recently Published Documents


TOTAL DOCUMENTS

549
(FIVE YEARS 106)

H-INDEX

42
(FIVE YEARS 6)

2022 ◽  
Vol 134 (1) ◽  
Author(s):  
Chao Peng ◽  
Hao Zhang ◽  
Changxuan Wen ◽  
Zhengfan Zhu ◽  
Yang Gao

2021 ◽  
Vol 9 ◽  
Author(s):  
Makoto Asai ◽  
Miguel A. Cortés-Giraldo ◽  
Vicent Giménez-Alventosa ◽  
Vicent Giménez Gómez ◽  
Francesc Salvat

A translation of the penelope physics subroutines to C++, designed as an extension of the Geant4 toolkit, is presented. The Fortran code system penelope performs Monte Carlo simulation of coupled electron-photon transport in arbitrary materials for a wide energy range, nominally from 50 eV up to 1 GeV. Penelope implements the most reliable interaction models that are currently available, limited only by the required generality of the code. In addition, the transport of electrons and positrons is simulated by means of an elaborate class II scheme in which hard interactions (involving deflection angles or energy transfers larger than pre-defined cutoffs) are simulated from the associated restricted differential cross sections. After a brief description of the interaction models adopted for photons and electrons/positrons, we describe the details of the class-II algorithm used for tracking electrons and positrons. The C++ classes are adapted to the specific code structure of Geant4. They provide a complete description of the interactions and transport mechanics of electrons/positrons and photons in arbitrary materials, which can be activated from the G4ProcessManager to produce simulation results equivalent to those from the original penelope programs. The combined code, named PenG4, benefits from the multi-threading capabilities and advanced geometry and statistical tools of Geant4.


Author(s):  
Majdi Gzal ◽  
Alexander F. Vakakis ◽  
Lawrence A. Bergman ◽  
Oleg V. Gendelman

Author(s):  
Xiaolong Yu ◽  
Jörn Callies ◽  
Roy Barkan ◽  
Kurt L. Polzin ◽  
Eleanor E. Frajka-Williams ◽  
...  

Abstract Mesoscale eddies contain the bulk of the ocean’s kinetic energy (KE), but fundamental questions remain on the cross-scale KE transfers linking eddy generation and dissipation. The role of submesoscale flows represents the key point of discussion, with contrasting views of submesoscales as either a source or a sink of mesoscale KE. Here, the first observational assessment of the annual cycle of the KE transfer between mesoscale and submesoscale motions is performed in the upper layers of a typical open-ocean region. Although these diagnostics have marginal statistical significance and should be regarded cautiously, they are physically plausible and can provide a valuable benchmark for model evaluation. The cross-scale KE transfer exhibits two distinct stages, whereby submesoscales energize mesoscales in winter and drain mesoscales in spring. Despite this seasonal reversal, an inverse KE cascade operates throughout the year across much of the mesoscale range. Our results are not incompatible with recent modeling investigations that place the headwaters of the inverse KE cascade at the submesoscale, and that rationalize the seasonality of mesoscale KE as an inverse cascade-mediated response to the generation of submesoscales in winter. However, our findings may challenge those investigations by suggesting that, in spring, a downscale KE transfer could dampen the inverse KE cascade. An exploratory appraisal of the dynamics governing mesoscale-submesoscale KE exchanges suggests that the upscale KE transfer in winter is underpinned by mixed-layer baroclinic instabilities, and that the downscale KE transfer in spring is associated with frontogenesis. Current submesoscale-permitting ocean models may substantially understate this downscale KE transfer, due to the models’ muted representation of frontogenesis.


2021 ◽  
Author(s):  
Halil Zafer Alibaba

The aim of this study was to determine how much thermal comfort can be obtained through heat/energy transfers between the office/external air and the transparent/opaque surfaces of an office by combining different transparent and opaque wall surface ratios with different window opening percentages using dynamic thermal simulations. It found that the optimum window-to-wall ratio (WWR) for energy conservation is 40%, with a 20% window opening ratio. The 80% and 90% thermal comfort ranges of the adaptive thermal comfort methodology are found in May, October, September, and the yearly average, while June and August are only in the range of 80% acceptability. The office constantly loses heat through air flow with any glass size on its external facade and any window opening ratio. Moreover, all sizes of opaque and transparent internal surfaces transferred heat from outside by conduction, while the opaque wall similarly always transferred energy to heat up the office air internally and outside air externally through convection. The external glass also heats the office air by convection, except in the months of January, November, and December.


Author(s):  
Yinpo Qiao

Samarium (Sm)-doped calcium–strontium–hydroxyapatite (Ca–Sr–HA:Sm) materials were designed and prepared, and the influence of Sr-introduction on the structure, photoluminescence (PL) and cytotoxicity of samples was revealed. The Sr-doping deduces the shift of some diffraction peaks to smaller angles and enlarges the particle size of samples. The typical red– orange emissions and corresponding luminescence quenching of Sm[Formula: see text] were observed, and the optimal luminescence performance appeared when [Formula: see text](Sr) = 7(Sr/Ca = 7/3) and quenching concentration closes to [Formula: see text](Sm) = 0.8 mol.%. The non-radiative transitions and energy transfers due to the dipole–dipole interactions between ions with different symmetry are essential to the luminescence and quenching of Sm[Formula: see text]. Furthermore, the viability values of human HepG2 cells are calculated larger than 90%, and the red–orange color emission was observed when the particles are incubated with cells.


Author(s):  
Mahendra K Verma

Abstract In three-dimensional hydrodynamic turbulence forced at large length scales, a constant energy flux $ \Pi_u $ flows from large scales to intermediate scales, and then to small scales. It is well known that for multiscale energy injection and dissipation, the energy flux $\Pi_u$ varies with scales. In this review we describe this principle and show how this general framework is useful for describing a variety of turbulent phenomena. Compared to Kolmogorov's spectrum, the energy spectrum steepens in turbulence involving quasi-static magnetofluid, Ekman friction, stable stratification, magnetohydrodynamics, and solution with dilute polymer. However, in turbulent thermal convection, in unstably stratified turbulence such as Rayleigh-Taylor turbulence, and in shear turbulence, the energy spectrum has an opposite behaviour due to an increase of energy flux with wavenumber. In addition, we briefly describe the role of variable energy flux in quantum turbulence, in binary-fluid turbulence including time-dependent Landau-Ginzburg and Cahn-Hillianrd equations, and in Euler turbulence. We also discuss energy transfers in anisotropic turbulence.


Sign in / Sign up

Export Citation Format

Share Document