scholarly journals Plasma drifts and polarization electric fields associated with TID‐like disturbances in the low‐latitude ionosphere: C/NOFS observations

2016 ◽  
Vol 121 (2) ◽  
pp. 1802-1812 ◽  
Author(s):  
Chao‐Song Huang
2007 ◽  
Vol 25 (11) ◽  
pp. 2371-2392 ◽  
Author(s):  
J. A. Bittencourt ◽  
V. G. Pillat ◽  
P. R. Fagundes ◽  
Y. Sahai ◽  
A. A. Pimenta

Abstract. A realistic fully time-dependent computer model, denominated LION (Low-latitude Ionospheric) model, that simulates the dynamic behavior of the low-latitude ionosphere is presented. The time evolution and spatial distribution of the ionospheric particle densities and velocities are computed by numerically solving the time-dependent, coupled, nonlinear system of continuity and momentum equations for the ions O+, O2+, NO+, N2+ and N+, taking into account photoionization of the atmospheric species by the solar extreme ultraviolet radiation, chemical and ionic production and loss reactions, and plasma transport processes, including the ionospheric effects of thermospheric neutral winds, plasma diffusion and electromagnetic E×B plasma drifts. The Earth's magnetic field is represented by a tilted centered magnetic dipole. This set of coupled nonlinear equations is solved along a given magnetic field line in a Lagrangian frame of reference moving vertically, in the magnetic meridian plane, with the electromagnetic E×B plasma drift velocity. The spatial and time distribution of the thermospheric neutral wind velocities and the pattern of the electromagnetic drifts are taken as known quantities, given through specified analytical or empirical models. The model simulation results are presented in the form of computer-generated color maps and reproduce the typical ionization distribution and time evolution normally observed in the low-latitude ionosphere, including details of the equatorial Appleton anomaly dynamics. The specific effects on the ionosphere due to changes in the thermospheric neutral winds and the electromagnetic plasma drifts can be investigated using different wind and drift models, including the important longitudinal effects associated with magnetic declination dependence and latitudinal separation between geographic and geomagnetic equators. The model runs in a normal personal computer (PC) and generates color maps illustrating the typical behavior of the low-latitude ionosphere for a given longitudinal region, for different seasons, geophysical conditions and solar activity, at each instant of time, showing the time evolution of the low-latitude ionosphere, between about 20° north and south of the magnetic equator. This paper presents a detailed description of the mathematical model and illustrative computer results.


2009 ◽  
Vol 27 (3) ◽  
pp. 1175-1187 ◽  
Author(s):  
E. Astafyeva

Abstract. Dayside ionospheric response to five intense geomagnetic storms (Dst<−120 nT) that occurred in 2001–2005 was investigated by use of simultaneous TEC measurements by the CHAMP, SAC-C, TOPEX/Jason-1 satellites. Since the satellites passed over different longitudinal sectors and measured TEC in different range of altitudes, it was possible to obtain information about altitudinal and longitudinal ionosphere redistribution during these storms. Severe enhancements (up to ~350%) of the equatorial and mid-latitude TEC above ~430 km with concurrent traveling of the equatorial anomaly crests for a distance of 10–15° of latitude were observed during two of the five events analyzed here (6 November 2001 and 8 November 2004). This phenomenon, known as the dayside ionosphere uplift, or the "daytime super-fountain effect", occurred after sudden drop in IMF Bz and consequent penetration of the electric fields to the low-latitude ionosphere. However, the same order Bz negative events caused comparatively weak changes in the dayside TEC (up to ~80 TECU) during the other three events of 18 June 2003, 11 February 2004 and 24 August 2005. At the main phase of these storms there were mostly observed formation of the "typical" dual peak structure of the equatorial anomaly rather than the reinforcement of the fountain effect and the anomaly itself. Possible reasons and factors responsible for the development of the extreme ionosphere effects are discussed in the paper.


2007 ◽  
Vol 25 (3) ◽  
pp. 569-574 ◽  
Author(s):  
B. T. Tsurutani ◽  
O. P. Verkhoglyadova ◽  
A. J. Mannucci ◽  
T. Araki ◽  
A. Sato ◽  
...  

Abstract. The prompt penetration of interplanetary electric fields (IEFs) to the dayside low-latitude ionosphere during the first ~2 h of a superstorm is estimated and applied to a modified NRL SAMI2 code for the 30 October 2003 event. In our simulations, the dayside ionospheric O+ is convected to higher altitudes (~600 km) and higher latitudes (~±25° to 30°), forming highly displaced equatorial ionospheric anomaly (EIA) peaks. This feature plus others are consistent with previously published CHAMP electron (TEC) measurements and with the dayside superfountain model. The rapid upward motion of the O+ ions causes neutral oxygen (O) uplift due to ion-neutral drag. It is estimated that above ~400 km altitude the O densities within the displaced EIAs can be increased substantially over quiet time values. The latter feature will cause increased drag for low-altitude satellites. This newly predicted phenomenon is expected to be typical for superstorm/IEF events.


2007 ◽  
Vol 69 (10-11) ◽  
pp. 1182-1199 ◽  
Author(s):  
Naomi Maruyama ◽  
Stanislav Sazykin ◽  
Robert W. Spiro ◽  
David Anderson ◽  
Adela Anghel ◽  
...  

Author(s):  
Takashi Kikuchi ◽  
Kumiko K. Hashimoto ◽  
Atsuki Shinbori ◽  
Yuji Tsuji ◽  
Shin-Ichi Watari

Sign in / Sign up

Export Citation Format

Share Document