peak structure
Recently Published Documents


TOTAL DOCUMENTS

193
(FIVE YEARS 41)

H-INDEX

22
(FIVE YEARS 4)

2022 ◽  
Vol 924 (2) ◽  
pp. 59
Author(s):  
J. Y. Lu ◽  
Y. T. Xiong ◽  
K. Zhao ◽  
M. Wang ◽  
J. Y. Li ◽  
...  

Abstract In this paper, a novel bimodal model to predict a complete sunspot cycle based on comprehensive precursor information is proposed. We compare the traditional 13 month moving average with the Gaussian filter and find that the latter has less missing information and can better describe the overall trend of the raw data. Unlike the previous models that usually only use one precursor, here we combine the implicit and geometric information of the solar cycle (peak and skewness of the previous cycle and start value of the predicted cycle) with the traditional precursor method based on the geomagnetic index and adopt a multivariate linear approach with a higher goodness of fit (>0.85) in the fitting. Verifications for cycles 22–24 demonstrate that the model has good performance in predicting the peak and peak occurrence time. It also successfully predicts the complete bimodal structure for cycle 22 and cycle 24, showing a certain ability to predict whether the next solar cycle is unimodal or bimodal. It shows that cycle 25 is a single-peak structure and that the peak will come in 2024 October with a peak of 145.3.


2022 ◽  
Vol 924 (1) ◽  
pp. 34
Author(s):  
M. Cufari ◽  
Eric R. Coughlin ◽  
C. J. Nixon

Abstract Upon entering the tidal sphere of a supermassive black hole, a star is ripped apart by tides and transformed into a stream of debris. The ultimate fate of that debris, and the properties of the bright flare that is produced and observed, depends on a number of parameters, including the energy of the center of mass of the original star. Here we present the results of a set of smoothed particle hydrodynamics simulations in which a 1M ⊙, γ = 5/3 polytrope is disrupted by a 106 M ⊙ supermassive black hole. Each simulation has a pericenter distance of r p = r t (i.e., β ≡ r t/r p = 1 with r t the tidal radius), and we vary the eccentricity e of the stellar orbit from e = 0.8 up to e = 1.20 and study the nature of the fallback of debris onto the black hole and the long-term fate of the unbound material. For simulations with eccentricities e ≲ 0.98, the fallback curve has a distinct, three-peak structure that is induced by self-gravity. For simulations with eccentricities e ≳ 1.06, the core of the disrupted star reforms following its initial disruption. Our results have implications for, e.g., tidal disruption events produced by supermassive black hole binaries.


Author(s):  
Kulsoom Rahim ◽  
Humaira Akram ◽  
Kashif Sabeeh

Abstract In this work we investigate the influence of quadratic in momentum term (Schrodinger term) on magneto-transport properties of thin film topological insulators. The Schrodinger term modifies the Dirac cones into an hourglass shape which results in inter and intraband Landau levels crossings. Breaking of the particle-hole symmetry in Landau level spectrum in the presence of k2 term leads to asymmetrical density of states profile. We calculate collisional and Hall conductivity for mixed Dirac-Schrodinger system in linear response regime and show oscillatory behavior in collisional con- ductivity, while Zeeman and hybridization terms provide a doubly split peak structure in collisional conductivity for the case m/me → ∞. We calculate Hall conductivity analytically and show that for mixed system filling factor is not symmetric about Fermi energy unlike symmetic plateaus for pure Dirac case.


Author(s):  
Anca Bleoju ◽  
Eugen Gavan ◽  
Costel Iulian Mocanu ◽  
Daniela-Ioana Tudose

The fore area of the ships in extreme conditions is commonly subjected to external impact pressures such as bottom slamming and bow impact. The phenomenon combined with a poor design can lead to local structural damage (cracks, dents, buckling of plate panels) and malfunction to the installations on-board of the ship. In the present article, a comparison study between different steel material grades is performed for a VLCC fore peak structure subjected to external and internal dynamic pressures under the Harmonized Common Structural Rules for Bulk Carriers and Oil Tankers (H-CSR). Three steel grades generally used in the shipbuilding industry, one normal strength and two higher strength, are subjected for the assessment. The hull structure is built based on the benchmark crude oil carrier KVLCC2 surface developed by KRISO (Korea Research Institute for Ships and Ocean Engineering, and modelled with plate finite elements in FEMAP software. The study targets an optimization process to minimize the steel weight of the structural members by plate elements thickness reduction.


Atoms ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 78
Author(s):  
R. D. DuBois ◽  
O. G. de Lucio

Triply differential data are presented for the 200 eV positron and electron impact ionization of argon. Six electron emission energies between 2.6 and 19 eV, and for scattering angles of 2, 3, and 4 degrees cover a momentum transfer range of 0.16 to 0.31 a.u. The binary and recoil intensities are fitted using a double peak structure in both regions, which, for the present kinematic conditions, are unresolved. The fitted peak intensities and angular positions are shown to have systematic dependences as a function of the momentum transfer and kinematic emission angle, respectively, and illustrate projectile charge effects. A comparison with available theories is made where it is seen that the most notable differences include the fact that for the binary lobe, the observed intensity for emission angles around 100° is absent in the theories, and the theoretical predications overestimate the importance of recoil interactions.


Entropy ◽  
2021 ◽  
Vol 23 (9) ◽  
pp. 1145
Author(s):  
Zhiyu Tian ◽  
Yang Liu ◽  
Le Luo

Non-Hermitian topological edge states have many intriguing properties, however, to date, they have mainly been discussed in terms of bulk–boundary correspondence. Here, we propose using a bulk property of diffusion coefficients for probing the topological states and exploring their dynamics. The diffusion coefficient was found to show unique features with the topological phase transitions driven by parity–time (PT)-symmetric non-Hermitian discrete-time quantum walks as well as by Hermitian ones, despite the fact that artificial boundaries are not constructed by an inhomogeneous quantum walk. For a Hermitian system, a turning point and abrupt change appears in the diffusion coefficient when the system is approaching the topological phase transition, while it remains stable in the trivial topological state. For a non-Hermitian system, except for the feature associated with the topological transition, the diffusion coefficient in the PT-symmetric-broken phase demonstrates an abrupt change with a peak structure. In addition, the Shannon entropy of the quantum walk is found to exhibit a direct correlation with the diffusion coefficient. The numerical results presented herein may open up a new avenue for studying the topological state in non-Hermitian quantum walk systems.


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4500
Author(s):  
Kien Nguyen ◽  
Ewen Bellec ◽  
Edoardo Zatterin ◽  
Gwenael Le Rhun ◽  
Patrice Gergaud ◽  
...  

Electrical aging in lead zirconate titanate (PbZrxTi1−xO3) thin films has been intensively studied from a macroscopic perspective. However, structural origins and consequences of such degradation are less documented. In this study, we have used synchrotron radiation to evaluate the behavior of ferroelectric domains by X-ray diffraction (XRD). The sample was loaded with an AC triangular bias waveform between ±10 V with a number of cycle varying from one up to 108. At each step of the aging procedure, XRD spectra had been collected in situ during the application of an electric field on a capacitor. The fine analysis of the (200) pseudo-cubic peak structure allows to separate the evolution of the volume of a/c tetragonal and rhombohedral domains along the electrical biasing. Throughout the aging, both intrinsic and extrinsic responses of tetra and rhombohedral domains are altered, the behavior depending on the observed phase. This methodology opens up new perspectives in the comprehension of the aging effect in ferroelectric thin film.


2021 ◽  
Vol 81 (7) ◽  
Author(s):  
A. Gómez Nicola ◽  
J. Ruiz de Elvira ◽  
A. Vioque-Rodríguez ◽  
D. Álvarez-Herrero

AbstractWe use recently derived Ward identities and lattice data for the light- and strange-quark condensates to reconstruct the scalar and pseudoscalar susceptibilities ($$\chi _S^\kappa $$ χ S κ , $$\chi _P^K$$ χ P K ) in the isospin 1/2 channel. We show that $$\chi _S^\kappa $$ χ S κ develops a maximum above the QCD chiral transition, after which it degenerates with $$\chi _P^K$$ χ P K . We also obtain $$\chi _S^\kappa $$ χ S κ within Unitarized Chiral Perturbation Theory (UChPT) at finite temperature, when it is saturated with the $$K_0^*(700)$$ K 0 ∗ ( 700 ) (or $$\kappa $$ κ ) meson, the dominant lowest-energy state in the isospin 1/2 scalar channel of $$\pi K$$ π K scattering. Such UChPT result reproduces the expected peak structure, revealing the importance of thermal interactions, and makes it possible to examine the $$\chi _S^\kappa $$ χ S κ dependence on the light- and strange-quark masses. A consistent picture emerges controlled by the $$m_l/m_s$$ m l / m s ratio that allows one studying $$K-\kappa $$ K - κ degeneration in the chiral, two-flavor and SU(3) limits. These results provide an alternative sign for $$O(4)\times U(1)_A$$ O ( 4 ) × U ( 1 ) A restoration that can be explored in lattice simulations and highlight the role of strangeness, which regulated by the strange-quark condensate helps to reconcile the current tension among lattice results regarding $$U(1)_A$$ U ( 1 ) A restoration.


2021 ◽  
Vol 10 (3) ◽  
Author(s):  
Satoshi Ejima ◽  
Florian Lange ◽  
Holger Fehske

Utilizing the unbiased time-dependent density-matrix renormalization group technique, we examine the photoemission spectra in the extended Falicov-Kimball model at zero and finite temperatures, particularly with regard to the excitonic insulator state most likely observed in the quasi-one-dimensional material Ta_22NiSe_55. Working with infinite boundary conditions, we are able to simulate all dynamical correlation functions directly in the thermodynamic limit. For model parameters best suited for Ta_22NiSe_55 the photoemission spectra show a weak but clearly visible two-peak structure, around the Fermi momenta k\simeq\pm k_{F}k≃±kF, which suggests that Ta_22NiSe_55 develops an excitonic insulator of BCS-like type. At higher temperatures, the leakage of the conduction-electron band beyond the Fermi energy becomes distinct, which provides a possible explanation for the bare non-interacting band structure seen in time- and angle-resolved photoemission spectroscopy experiments.


Author(s):  
Y Z Ding ◽  
W Wang ◽  
P Zhang ◽  
Q C Bu ◽  
C Cai ◽  
...  

Abstract In this paper, we presented a detailed timing analysis of a prominent outburst of 4U 0115+63 detected by Insight-HXMT in 2017 August. The spin period of the neutron star was determined to be 3.61398 ± 0.00002 s at MJD 57978. We measured the period variability and extract the orbital elements of the binary system. The angle of periastron evolved with a rate of $0.048^\circ \pm 0.003^\circ \rm \, yr^{-1}$. The light curves are folded to sketch the pulse profiles in different energy ranges. A multi-peak structure in 1-10 keV is clearly illustrated. We introduced wavelet analysis into our data analysis procedures to study QPO signals and perform a detailed wavelet analysis in many different energy ranges. Through the wavelet spectra, we report the discovery of a QPO at the frequency ∼10 mHz. In addition, the X-ray light curves showed multiple QPOs in the period of ∼16 − 32 s and ∼67 − 200 s. We found that the ∼100 s QPO was significant in most of the observations and energies. There exist positive relations between X-ray luminosity and their Q-factors and S-factors, while the QPO periods have no correlation with X-ray luminosity. In wavelet phase maps, we found that the pulse phase of ∼67 − 200 s QPO drifting frequently while the ∼16 − 32 s QPO scarcely drifting. The dissipation of oscillations from high energy to low energy was also observed. These features of QPOs in 4U 0115+63 provide new challenge to our understanding of their physical origins.


Sign in / Sign up

Export Citation Format

Share Document