plasma drifts
Recently Published Documents


TOTAL DOCUMENTS

107
(FIVE YEARS 19)

H-INDEX

27
(FIVE YEARS 1)

2022 ◽  
Vol 9 (1) ◽  
Author(s):  
Samuel A. Shidler ◽  
Fabiano S. Rodrigues

AbstractWe introduce a new numerical model developed to assist with Data Interpretation and Numerical Analysis of ionospheric Missions and Observations (DINAMO). DINAMO derives the ionospheric electrostatic potential at low- and mid-latitudes from a two-dimensional dynamo equation and user-specified inputs for the state of the ionosphere and thermosphere (I–T) system. The potential is used to specify the electric fields and associated F-region E × B plasma drifts. Most of the model was written in Python to facilitate the setup of numerical experiments and to engage students in numerical modeling applied to space sciences. Here, we illustrate applications and results of DINAMO in two different analyses. First, DINAMO is used to assess the ability of widely used I–T climatological models (IRI-2016, NRLMSISE-00, and HWM14), when used as drivers, to produce a realistic representation of the low-latitude electrodynamics. In order to evaluate the results, model E × B drifts are compared with observed climatology of the drifts derived from long-term observations made by the Jicamarca incoherent scatter radar. We found that the climatological I–T models are able to drive many of the features of the plasma drifts including the diurnal, seasonal, altitudinal and solar cycle variability. We also identified discrepancies between modeled and observed drifts under certain conditions. This is, in particular, the case of vertical equatorial plasma drifts during low solar flux conditions, which were attributed to a poor specification of the E-region neutral wind dynamo. DINAMO is then used to quantify the impact of meridional currents on the morphology of F-region zonal plasma drifts. Analytic representations of the equatorial drifts are commonly used to interpret observations. These representations, however, commonly ignore contributions from meridional currents. Using DINAMO we show that that these currents can modify zonal plasma drifts by up to ~ 16 m/s in the bottom-side post-sunset F-region, and up to ~ 10 m/s between 0700 and 1000 LT for altitudes above 500 km. Finally, DINAMO results show the relationship between the pre-reversal enhancement (PRE) of the vertical drifts and the vertical shear in the zonal plasma drifts with implications for equatorial spread F.


2021 ◽  
Author(s):  
Livia Casali ◽  
David Eldon ◽  
Adam G McLean ◽  
Tom H Osborne ◽  
Anthony W Leonard ◽  
...  

Abstract A comparative study of nitrogen versus neon has been carried out to analyze the impact of the two radiative species on power dissipation, SOL impurity distribution, divertor and pedestal characteristics. The experimental results show that N remains compressed in the divertor, thereby providing high radiative losses without affecting the pedestal profiles and displacing carbon as dominant radiator. Neon, instead, radiates more upstream than N thus reducing the power flux through the separatrix leading to a reduced ELM frequency and compression in the divertor. A significant amount of neon is measured in the plasma core leading to a steeper density gradient. The different behaviour between the two impurities is confirmed by SOLPS-ITER modelling which for the first time at DIII-D includes multiple impurity species and a treatment of full drifts, currents and neutral-neutral collisions. The impurity transport in the SOL is studied in terms of the parallel momentum balance showing that N is mostly retained in the divertor whereas Ne leaks out consistent with its higher ionization potential and longer mean free path. This is also in agreement with the enrichment factor calculations which indicate lower divertor enrichment for neon. The strong ionization source characterizing the SAS divertor causes a reversal of the main ions and impurity flows. The flow reversal together with plasma drifts and the effect of the thermal force contribute significantly in the shift of the impurity stagnation point affecting impurity leakage. This work provides a demonstration of the impurity leakage mechanism in a closed divertor structure and the consequent impact on pedestal. Since carbon is an intrinsic radiator at DIII-D, in this paper we have also demonstrated the different role of carbon in the N vs Ne seeded cases both in the experiments and in the numerical modeling. Carbon contributes more when neon seeding is injected compared to when nitrogen is used. Finally, the results highlight the importance of accompanying experimental studies with numerical modelling of plasma flows, drifts and ionization profile to determine the details of the SOL impurity transport as the latter may vary with changes in divertor regime and geometry. In the cases presented here, plasma drifts and flow reversal caused by high level of closure in the slot upper divertor at DIII-D play an important role in the underlined mechanism.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Samuel A. Shidler ◽  
Fabiano S. Rodrigues

AbstractWe present results of an effort to evaluate the ability of an analytic model to describe the behavior of the equatorial zonal plasma drifts given inputs provided by readily available climatological models of thermospheric and ionospheric parameters. In a data-model fusion approach, we used vertical drift measurements to drive the model and zonal drift measurements to evaluate its output. Drift measurements were made by the Jicamarca incoherent scatter radar, and model results were evaluated for different seasons and two distinct solar flux conditions. We focused, in particular, on model results for different versions of the Horizontal Wind Model (HWM 97, 07, and 14). We found that, despite its simplicity, the analytic model can reproduce fairly well most of the features in the observed zonal plasma drifts, including the vertical shear associated with the evening plasma vortex. During daytime hours the model predicts similar results for the zonal drifts independently of the HWM used to drive the model. More importantly, the modeled daytime drifts match exceptionally well the behavior and magnitude of the observed drifts for all seasons and solar flux conditions considered. The nighttime results drive the overall performance of the analytic model, and we found that a single HWM cannot provide the best results for all seasons and solar flux conditions. We also examined the main sources of zonal drift variability. Most of the morphology is controlled by the zonal wind dynamo term of the analytic model, but with non-negligible contribution from the vertical drift term. Finally, we examined the contribution from the E- and F-region to the zonal wind dynamo. The morphology of the zonal drifts in the region of observation (240–560 km altitude) is controlled mostly by the F-region winds, but with significant contributions from the daytime E-region particularly during December solstice and low solar flux conditions.


2021 ◽  
Author(s):  
Thomas Immel ◽  
Brian Harding ◽  
Roderick Heelis ◽  
Astrid Maute ◽  
Jeffrey Forbes ◽  
...  

<p>The electrodynamic influence of thermospheric winds is an effect thought to dominate the development of<span> </span>the daytime low-latitude ionosphere, through the generation of dynamo currents and associated vertical plasma drifts. Until recently, observations of the thermospheric and ionopsheric state variables have mainly been defined and compared on climatological time scales, due to their collection from separate observatories with disparate measurement capabilities.<span>  </span>These datasets are inadequate for investigation of the actual action of thermospheric drivers as they modify the ionospheric state, as the response clearly changes on 24-hour timescales, and shorter when viewed in the a constant-local-time frame<span> </span>of reference. New observatiions of thermospheric winds, uninterrupted over the 90-300 km altitude range, are now provided by the Ionospheric Connection Explorer along with simultaneous plasma velocity and density measurments. These observations are directly comparable to the wind measurements in crossings of the magnetic equator, where the winds are magnetically conjugate to the drift measurements. Investigation of the noon-sector drifts vs wind drivers is presented. We find that the local driver is clearly evident in the noon-time vertical plasma drifts under all conditions.</p><p> </p>


2020 ◽  
pp. 124203
Author(s):  
Boqiong Jiang ◽  
Kai Xu ◽  
Jing Li ◽  
Hao Lu ◽  
Xiaodan Fei ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document