scholarly journals Reconstruction of coseismic slip from the 2015 Illapel earthquake using combined geodetic and tsunami waveform data

Author(s):  
Amy Williamson ◽  
Andrew Newman ◽  
Phil Cummins
Author(s):  
Ryan Paulik ◽  
James H. Williams ◽  
Nick Horspool ◽  
Patricio A. Catalan ◽  
Richard Mowll ◽  
...  

2019 ◽  
Vol 219 (1) ◽  
pp. 514-521 ◽  
Author(s):  
Y Wang ◽  
K Satake ◽  
R Cienfuegos ◽  
M Quiroz ◽  
P Navarrete

SUMMARY The 2015 Illapel earthquake (Mw 8.3) occurred off central Chile on September 16, and generated a tsunami that propagated across the Pacific Ocean. The tsunami was recorded on tide gauges and Deep-ocean Assessment and Reporting of Tsunami (DART) tsunameters in east Pacific. Near-field and far-field tsunami forecasts were issued based on the estimation of seismic source parameters. In this study, we retroactively evaluate the potentiality of forecasting this tsunami in the far field based solely on tsunami data assimilation from DART tsunameters. Since there are limited number of DART buoys, virtual stations are assumed by interpolation to construct a more complete tsunami wavefront for data assimilation. The comparison between forecasted and observed tsunami waveforms suggests that our method accurately forecasts the tsunami amplitudes and arrival time in the east Pacific. This approach could be a complementary method of current tsunami warning systems based on seismic observations.


2016 ◽  
Author(s):  
Jonathan H. Elias ◽  
Michael Warner ◽  
Freddy Muñoz ◽  
Gerardo Gómez

2016 ◽  
Vol 43 (2) ◽  
pp. 574-583 ◽  
Author(s):  
F. Tilmann ◽  
Y. Zhang ◽  
M. Moreno ◽  
J. Saul ◽  
F. Eckelmann ◽  
...  

2021 ◽  
Author(s):  
Franco Lema ◽  
Mahesh Shrivastava

<p>The delayed aftershocks 2018 Mw 6.2 on April 10 and Mw 5.8 on Sept 1 and 2019 Mw 6.7 on January 20, Mw 6.4 on June 14, and Mw 6.2 on November 4, associated with the Mw 8.3 2015 Illapel Earthquake occurred in the ​​central Chile. The seismic source of this earthquake has been studied with the GPS, InSAR and tide gauge network. Although there are several studies performed to characterize the robust aftershocks and the variations in the field of deformation induced by the megathrust, but there are still aspects to be elucidated of the relationship between the transfer of stresses from the interface between plates towards delayed aftershocks with the crustal structures with seismogenic potential. Therefore, the principal objective of this study is to understand how the stress transfer induced by the 2015 Illapel earthquake of the heterogeneous rupture mechanism to intermediate-deep or crustal earthquakes. For this, coulomb stress changes from  finite fault model of the Illapel earthquake and with the biggest aftershocks in year 2015 are used. These cumulative stress pattern provides substantial evidences for the delayed aftershocks in this region. The subducting Challenger Fault Zone and Juan Fernandez Ridge heterogeneity are existing feature, which releases the accumulated coulomb stress changes and provide delayed aftershocks.  Therefore along with stress induced by a large earthquake such as Mw 8.3 from Illapel 2015 along with biggest aftershocks, have a direct mechanism that may activate the  delayed aftershocks. Our study suggests  the activation of crustal faults in this research as a risk assessment factor for the evaluating in the seismic context of the region and useful for another subduction zone.</p>


2020 ◽  
Vol 223 (2) ◽  
pp. 1162-1171
Author(s):  
Yushiro Fujii ◽  
Kenji Satake ◽  
Shingo Watada ◽  
Tung-Cheng Ho

SUMMARY We estimated the slip distribution on the fault of the 2005 Nias earthquake (Mw 8.6) by inversions of local GPS and coastal uplift/subsidence data and tsunami waveform data. The 2005 Nias earthquake occurred approximately three months after the 2004 Sumatra–Andaman earthquake (Mw 9.1) at the southern extension off Sumatra Island, Indonesia. The tsunami from the 2005 earthquake caused significantly less damage than the 2004 tsunami, yet was recorded at tide gauges and ocean bottom pressure gauges around the Indian Ocean, including the coasts of Africa and Antarctica. The elastic and gravitational coupling between the solid earth and the ocean causes not only a traveltime delay but also the change of waveforms of far-field tsunamis relative to the prediction based on the long-wave theory. We corrected the computed tsunami Green's functions for the elastic and gravitational coupling effect in the tsunami waveform inversion. We found a diffused slip (∼2 m over an area of 400 km × 100 km) at deeper parts (20–54 km) of the fault with a large localized slip (7 m over 100 km × 100 km) slightly south of the epicentre. The large slips at deeper parts of the fault were responsible for the small tsunami generation. Inversion using far-field tsunami data yielded a slip distribution similar to that obtained using local geodetic data alone and that from the joint inversion of local geodetic and far-field tsunami data, which is also similar to slip distributions from previous studies based on local geodetic data. This demonstrates that far-field tsunami waveforms, once corrected for propagation effects, can be used to estimate the slip distribution of large submarine earthquakes leading to results that are similar to those obtained using sparse local geodetic data.


2016 ◽  
Vol 206 (2) ◽  
pp. 1424-1430 ◽  
Author(s):  
Dietrich Lange ◽  
Jacob Geersen ◽  
Sergio Barrientos ◽  
Marcos Moreno ◽  
Ingo Grevemeyer ◽  
...  

Abstract Powerful subduction zone earthquakes rupture thousands of square kilometres along continental margins but at certain locations earthquake rupture terminates. To date, detailed knowledge of the parameters that govern seismic rupture and aftershocks is still incomplete. On 2015 September 16, the Mw 8.3 Illapel earthquake ruptured a 200 km long stretch of the Central Chilean subduction zone, triggering a tsunami and causing significant damage. Here, we analyse the temporal and spatial pattern of the coseismic rupture and aftershocks in relation to the tectonic setting in the earthquake area. Aftershocks cluster around the area of maximum coseismic slip, in particular in lateral and downdip direction. During the first 24 hr after the main shock, aftershocks migrated in both lateral directions with velocities of approximately 2.5 and 5 km hr−1. At the southern rupture boundary, aftershocks cluster around individual subducted seamounts that are related to the downthrusting Juan Fernández Ridge. In the northern part of the rupture area, aftershocks separate into an upper cluster (above 25 km depth) and a lower cluster (below 35 km depth). This dual seismic–aseismic transition in downdip direction is also observed in the interseismic period suggesting that it may represent a persistent feature for the Central Chilean subduction zone.


Sign in / Sign up

Export Citation Format

Share Document