scholarly journals The effects of magnetospheric processes on relativistic electron dynamics in the Earth's outer radiation belt

2017 ◽  
Vol 122 (10) ◽  
pp. 9952-9968 ◽  
Author(s):  
C. L. Tang ◽  
Y. X. Wang ◽  
B. Ni ◽  
Z. P. Su ◽  
G. D. Reeves ◽  
...  
2021 ◽  
Author(s):  
Christopher Lara ◽  
Pablo S. Moya ◽  
Victor Pinto ◽  
Javier Silva ◽  
Beatriz Zenteno

<p>The inner magnetosphere is a very important region to study, as with satellite-based communications increasing day after day, possible disruptions are especially relevant due to the possible consequences in our daily life. It is becoming very important to know how the radiation belts behave, especially during strong geomagnetic activity. The radiation belts response to geomagnetic storms and solar wind conditions is still not fully understood, as relativistic electron fluxes in the outer radiation belt can be depleted, enhanced or not affected following intense activity. Different studies show how these results vary in the face of different events. As one of the main mechanisms affecting the dynamics of the radiation belt are wave-particle interactions between relativistic electrons and ULF waves. In this work we perform a statistical study of the relationship between ULF wave power and relativistic electron fluxes in the outer radiation belt during several geomagnetic storms, by using magnetic field and particle fluxes data measured by the Van Allen Probes between 2012 and 2017. We evaluate the correlation between the changes in flux and the cumulative effect of ULF wave activity during the main and recovery phases of the storms for different position in the outer radiation belt and energy channels. Our results show that there is a good correlation between the presence of ULF waves and the changes in flux during the recovery phase of the storm and that correlations vary as a function of energy. Also, we can see in detail how the ULF power change for the electron flux at different L-shell We expect these results to be relevant for the understanding of the relative role of ULF waves in the enhancements and depletions of energetic electrons in the radiation belts for condition described.</p>


2002 ◽  
Vol 20 (7) ◽  
pp. 957-965 ◽  
Author(s):  
R. H. A. Iles ◽  
A. N. Fazakerley ◽  
A. D. Johnstone ◽  
N. P. Meredith ◽  
P. Bühler

Abstract. The relativistic electron response in the outer radiation belt during magnetic storms has been studied in relation to solar wind and geomagnetic parameters during the first six months of 1995, a period in which there were a number of recurrent fast solar wind streams. The relativistic electron population was measured by instruments on board the two microsatellites, STRV-1a and STRV-1b, which traversed the radiation belt four times per day from L ~ 1 out to L ~ 7 on highly elliptical, near-equatorial orbits. Variations in the E > 750 keV and E > 1 MeV electrons during the main phase and recovery phase of 17 magnetic storms have been compared with the solar wind speed, interplanetary magnetic field z-component, Bz , the solar wind dynamic pressure and Dst *. Three different types of electron responses are identified, with outcomes that strongly depend on the solar wind speed and interplanetary magnetic field orientation during the magnetic storm recovery phase. Observations also confirm that the L-shell, at which the peak enhancement in the electron count rate occurs has a dependence on Dst *.Key words. Magnetospheric physics (energetic particles, trapped; storms and substorms) – Space plasma physics (charged particle motion and accelerations)


2011 ◽  
Vol 28 (3) ◽  
pp. 039401 ◽  
Author(s):  
Fu-Liang Xiao ◽  
Zhao-Guo He ◽  
Sai Zhang ◽  
Zhen-Peng Su ◽  
Liang-Xu Chen

2008 ◽  
Vol 113 (A12) ◽  
pp. n/a-n/a ◽  
Author(s):  
Athina Varotsou ◽  
Daniel Boscher ◽  
Sebastien Bourdarie ◽  
Richard B. Horne ◽  
Nigel P. Meredith ◽  
...  

2021 ◽  
Author(s):  
Sigiava Aminalragia-Giamini ◽  
Christos Katsavrias ◽  
Constantinos Papadimitriou ◽  
Ioannis A. Daglis ◽  
Ingmar Sandberg ◽  
...  

<p>The nature of the semi-annual variation in the relativistic electron fluxes in the Earth’s outer radiation belt is investigated using Van Allen Probes (MagEIS and REPT) and GOES (EPS) data during solar cycle 24. We perform wavelet and cross-wavelet analysis in a broad energy and spatial range of electron fluxes and examine their phase relationship with the axial, equinoctial and Russell-McPherron mechanisms. It is found that the semi-annual variation in the relativistic electron fluxes exhibits pronounced power in the 0.3 – 4.2 MeV energy range at L-shells higher than 3.5 and, moreover, it exhibits an in-phase relationship with the Russell-McPherron effect indicating the former is primarily driven by the latter. Furthermore, the analysis of the past 3 solar cycles with GOES/EPS indicates that the semi-annual variation at geosynchronous orbit is evident during the descending phases and coincides with periods of a higher (lower) HSS (ICME) occurrence.</p><p>This work has received funding from the European Union's Horizon 2020 research and innovation programme “SafeSpace” under grant agreement No 870437 and from the European Space Agency under the “European Contribution to International Radiation Environment Near Earth (IRENE) Modelling System” activity under ESA Contract No 4000127282/19/NL/IB/gg.</p>


2021 ◽  
Vol 85 (3) ◽  
pp. 309-313
Author(s):  
N. V. Sotnikov ◽  
E. E. Antonova ◽  
I. L. Ovchinnikov ◽  
V. G. Vorobjev ◽  
O. I. Yagodkina ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document