A warning indicator for distribution network to extreme weather events

Author(s):  
Masoud Sadeghi Khomami ◽  
Meghdad Tourandaz Kenari ◽  
Mohammad Sadegh Sepasian
Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4742
Author(s):  
Emanuele Ciapessoni ◽  
Andrea Pitto ◽  
Diego Cirio

Nowadays, distribution network operators are urged by regulatory authorities to reduce the load disruptions due to extreme weather events, i.e., to enhance network resilience: in particular, in Italy they are required to present a yearly plan (called “resilience plans”) describing the interventions aimed to improve network resilience. To this purpose, they need new methodologies and tools to assess the network resilience and to quantify the benefits of countermeasures. This paper proposes the application of a risk-based framework and tool to assess the impacts of extreme weather events in T&D grids, which anticipate critical network situations in presence of incumbent weather threats. To do this, the forecasting of weather events is combined with the component vulnerability models in order to predict which components are more prone to fail. Based on this set of components, the set of most risky contingencies is identified and their impacts on the distribution network in terms of unsupplied load are quantified. The major advantage of the applied methodology is its generality: in fact, it is applicable to both distribution and transmission systems as well as integrated transmission and distribution (T&D) systems, considering the peculiarities of each type of grid, in terms of operation, maintenance and component vulnerabilities. In particular, the application refers to a distribution network connected to a portion of high voltage transmission system in a mountainous zone, with focus on two major threats in the area, i.e., wet snow and fall of trees induced by combined wind and snow. The methodology also quantifies the benefits brought to the system resilience by countermeasures such as reconductoring, optimal reconfiguration or new right-of-way maintenance procedures. Simulations demonstrate the ability of the methodology to support T&D operators in an operational planning context in case of different incumbent threats.


2018 ◽  
Author(s):  
Peter C. Balash, PhD ◽  
Kenneth C. Kern ◽  
John Brewer ◽  
Justin Adder ◽  
Christopher Nichols ◽  
...  

2011 ◽  
Vol 16 (2) ◽  
pp. 177-198 ◽  
Author(s):  
KARL PAUW ◽  
JAMES THURLOW ◽  
MURTHY BACHU ◽  
DIRK ERNST VAN SEVENTER

ABSTRACTExtreme weather events such as droughts and floods have potentially damaging implications for developing countries. Previous studies have estimated economic losses during hypothetical or single historical events, and have relied on historical production data rather than explicitly modeling climate. However, effective mitigation strategies require knowledge of the full distribution of weather events and their isolated effects on economic outcomes. We combine stochastic hydrometeorological crop-loss models with a regionalized computable general equilibrium model to estimate losses for the full distribution of possible weather events in Malawi. Results indicate that, based on repeated sampling from historical events, at least 1.7 per cent of Malawi's gross domestic product (GDP) is lost each year due to the combined effects of droughts and floods. Smaller-scale farmers in the southern region of the country are worst affected. However, poverty among urban and nonfarm households also increases due to national food shortages and higher domestic prices.


Sign in / Sign up

Export Citation Format

Share Document