Trends in Extreme Weather Events Induced by Global Climate Change

2020 ◽  
Vol 140 (8) ◽  
pp. 634-637
Author(s):  
Kazuki Yamaguchi
2014 ◽  
Vol 521 ◽  
pp. 423-428
Author(s):  
Ling Ling Pan ◽  
Feng Li ◽  
Sheng Chun Yang ◽  
Shu Hai Feng ◽  
Yong Wang

Frequency and severity of some extreme weather events are increasing, and weather can impact the power system and its components in a number of ways. This paper identifies key technical issues facing the electric power industry, related to global climate change. The technical challenges arise from: 1) impacts on supply and demand balance; 2) impacts on system operating strategies, and power generation scheduling; 3) impacts on power grid structure, and power infrastructure response to extreme weather events; and 4) impacts on operation parameters of power system. The objective of this paper is to facilitate continued discussion of power systemclimate change interactions. To this end, this paper identifies key issues relating to the interactions between the electric power industry and global climate change. These issues will not be resolved quickly, and it requires sustained attention if they are to be resolved successfully.


Author(s):  
Libby Robin

As global climate change shifts seasonal patterns, local and uncertain seasons of Australia have global relevance. Australia’s literature tracks extreme local weather events, exploring ‘slow catastrophes’ and ‘endurance.’ Humanists can change public policy in times when stress is a state of life, by reflecting on the psyches of individuals, rather than the patterns of the state. ‘Probable’ futures, generated by mathematical models that predict nature and economics, have little to say about living with extreme weather. Hope is not easily modelled. The frameworks that enable hopeful futures are qualitatively different. They can explore the unimaginable by offering an ‘interior apprehension.’


2019 ◽  
Vol 70 (1) ◽  
pp. 449-474 ◽  
Author(s):  
Gary W. Evans

The projected behavioral impacts of global climate change emanate from environmental changes including temperature elevation, extreme weather events, and rising air pollution. Negative affect, interpersonal and intergroup conflict, and possibly psychological distress increase with rising temperature. Droughts, floods, and severe storms diminish quality of life, elevate stress, produce psychological distress, and may elevate interpersonal and intergroup conflict. Recreational opportunities are compromised by extreme weather, and children may suffer delayed cognitive development. Elevated pollutants concern citizens and may accentuate psychological distress. Outdoor recreational activity is curtailed by ambient pollutants. Limitations and issues in need of further investigation include the following: lack of data on direct experience with climate change rather than indirect assessments related to projected changes; poor spatial resolution in environmental exposures and behavioral assessments; few rigorous quasi-experimental studies; overreliance on self-reports of behavioral outcomes; little consideration of moderator effects; and scant investigation of underlying psychosocial processes to explain projected behavioral impacts.


2021 ◽  
Vol 2 (2) ◽  
pp. 164-171
Author(s):  
Mónika Lakatos ◽  
Zita Bihari ◽  
Beatrix Izsák ◽  
Olivér Szentes

Összefoglaló. A WMO 2021 elején kiadott állapotértékelője szerint a COVID–19 miatti korlátozások ellenére az üvegházhatású gázok légköri koncentrációja tovább emelkedett. A tengerszint emelkedés a közelmúltban gyorsult, rekordmagas volt a jégvesztés Grönlandon, az Antarktisz olvadása is gyorsulni látszik. Szélsőséges időjárás pusztított, élelmiszer-ellátási gondok léptek fel, és 2020-ban a COVID–19 hatásával együtt nőtt a biztonsági kockázat több régióban is. Az éghajlatváltozás felerősíti a meglévő kockázatokat, és újabb kockázatok is fellépnek majd a természeti és az ember által alkotott rendszerekben. Az éghajlatváltozás hatása a hazai mérési sorokban is megjelenik. Az Országos Meteorológiai Szolgálat (OMSZ) homogenizált, ellenőrzött mérései szerint 1901 óta 1,2 °C-ot nőtt az évi középhőmérséklet. Két normál időszakot vizsgálva egyértelmű a magasabb hőmérsékletek felé tolódás, a csapadék éven belüli eloszlása megváltozott, az őszi másodmaximum eltűnőben van. Nőtt az aszályhajlam, gyakoribbá váltak a hőhullámok, intenzívebb a csapadékhullás, emiatt az éghajlatvédelemi intézkedések mellett a jól megalapozott alkalmazkodás is indokolt. A biztonsági kockázatok csökkenthetők az OMSZ és Országos Katasztrófavédelmi Főigazgatóság közötti együttműködés által. Summary. The first part of the article gives an overview of the state of the global climate in 2020 based on the report compiled by the World Meteorological Organization (WMO, 2021) and network of partners from UN. According to this report, the 2020 was one of the three warmest years on record, despite a cooling La Niña event. The global mean temperature for 2020 (January to October) was 1.2 ± 0.1 °C above the 1850–1900 baseline, used as an approximation of pre-industrial levels. The latest six years have been the warmest on record. 2011-2020 was the warmest decade on record. The report on the “State of the Global Climate 2020” illustrates the state of the key indicators of the climate system, including greenhouse gas concentrations, increasing land and ocean temperatures, sea level rise, melting ice and glacier and extreme weather. It also highlights impacts on socio-economic development, migration and displacement and food security. All key climate indicators and associated impact information published in this report highlight continuing climate change, an increasing occurrence and intensification of extreme events, and severe losses and damage, affecting people, societies and economies. Extreme weather events triggered an estimated 10 000 000 displacements in 2020. Because of COVID-19 lockdowns, response and recovery operations were leading to delays in providing assistance. After decades of decline, the increase in food insecurity since 2014 is being driven by conflict and economic slowdown as well as climate variability and extreme weather events. Climate change will amplify existing risks and create new risks for natural and human systems. Risks are unevenly distributed and are generally greater for disadvantaged people and communities in countries at all levels of development. The global changes have local effects in Hungary as it is shown in the second part of the article. The climate monitoring at the Hungarian Meteorological Service is based on measurements stored in the Climate data archive. We apply data management tools to produce high quality and representative datasets to prepare climate studies. The data homogenization makes possible to eliminate inhomogeneities due to change in the measuring practice and station movements. Applying spatial interpolation procedure for meteorological data provide the spatial representativeness of the climate data used for monitoring. The surface temperature increase is slightly higher in Hungary than the global change from 1901. The annual precipitation decreased by 3% from 1901, although this change is not significant statistically. The monthly temperatures shifted to warmer monthly averages in the most recent normal period between 1991 and 2020 comparing to the 1961–1990 in each months. The annual course of the monthly precipitations changed, especially autumn. The monthly sum in September and in October increased substantially. The frequency of heatwave days increased by more than two weeks in the Little Plain and in the southern part of the Great Hungarian Plain from 1981, which is the most intense warming period globally. The intensification of the precipitation in the recent years is obvious in our region. The cooperation of the Disaster Risk Management and the Hungarian Meteorological Service could expand the adaptive capacity of the society to climate change.


2020 ◽  
Vol 12 (3) ◽  
pp. 435-452 ◽  
Author(s):  
Nadine Fleischhut ◽  
Stefan M. Herzog ◽  
Ralph Hertwig

AbstractAs climate change unfolds, extreme weather events are on the rise worldwide. According to experts, extreme weather risks already outrank those of terrorism and migration in likelihood and impact. But how well does the public understand weather risks and forecast uncertainty and thus grasp the amplified weather risks that climate change poses for the future? In a nationally representative survey (N = 1004; Germany), we tested the public’s weather literacy and awareness of climate change using 62 factual questions. Many respondents misjudged important weather risks (e.g., they were unaware that UV radiation can be higher under patchy cloud cover than on a cloudless day) and struggled to connect weather conditions to their impacts (e.g., they overestimated the distance to a thunderstorm). Most misinterpreted a probabilistic forecast deterministically, yet they strongly underestimated the uncertainty of deterministic forecasts. Respondents with higher weather literacy obtained weather information more often and spent more time outside but were not more educated. Those better informed about climate change were only slightly more weather literate. Overall, the public does not seem well equipped to anticipate weather risks in the here and now and may thus also fail to fully grasp what climate change implies for the future. These deficits in weather literacy highlight the need for impact forecasts that translate what the weather may be into what the weather may do and for transparent communication of uncertainty to the public. Boosting weather literacy may help to improve the public’s understanding of weather and climate change risks, thereby fostering informed decisions and mitigation support.


Sign in / Sign up

Export Citation Format

Share Document