Effect of partial loading on a three‐area hydro‐thermal system integrated with realistic dish‐Stirling solar thermal system, accurate model of high‐voltage direct link considering virtual inertia and energy storage systems

Author(s):  
Sanjeev Kumar Bhagat ◽  
Lalit Chandra Saikia ◽  
Naladi Ram Babu
Author(s):  
Shahin Shafiee ◽  
Mary Helen McCay

Thermal storage in an important operational aspect of a solar thermal system which enables it to deliver power or energy when there is no sunlight available. Current thermal storage systems in solar thermal systems work based on transferring the generated heat from sunlight to a thermal mass material in an insulated reservoir and then withdraw it during dark hours. Some common thermal mass materials are stone, concrete, water, pressurized steam, phase changing materials, and molten salts. In the current paper, a hybrid thermal energy storage system which is based on two metal hydrides is proposed for a solar thermal system. The two hydrides which are considered for this system are magnesium hydride and lanthanum nickel. Although metal hydride Energy Storage Systems (ESS) suffer from slow response time which restricts them as a practical option for frequency regulation, off peak shaving and power supply stabilization; they can still demonstrate significant flexibility and good energy capacity. These specifications make them good candidates for thermal energy storage which are applicable to any capacity of a solar thermal system just by changing the size of the ESS unit.


2021 ◽  
Author(s):  
Nicolai Ree ◽  
Mads Koerstz ◽  
Kurt V. Mikkelsen ◽  
Jan H. Jensen

We present a computational methodology for the screening of a chemical space of 10²⁵ substituted norbornadiene molecules for promising kinetically stable molecular solar thermal (MOST) energy storage systems with high energy densities that absorb in the visible part of the solar spectrum. We use semiempirical tight-binding methods to construct a dataset of nearly 34,000 molecules and train graph convolutional networks to predict energy densities, kinetic stability, and absorption spectra and then use the models together with a genetic algorithm to search the chemical space for promising MOST energy storage systems. We identify 15 kinetically stable molecules, five of which have energy densities greater than 0.45 MJ/kg and the main conclusion of this study is that the largest energy density that can be obtained for a single norbornadiene moiety with the substituents considered here, while maintaining a long half-life and absorption in the visible spectrum, is around 0.55 MJ/kg.


Sign in / Sign up

Export Citation Format

Share Document