high voltage battery
Recently Published Documents


TOTAL DOCUMENTS

75
(FIVE YEARS 30)

H-INDEX

7
(FIVE YEARS 1)

Author(s):  
Laura Wheatcroft ◽  
Trung Dung Tran ◽  
Doğan Özkaya ◽  
James Cookson ◽  
Beverley J. Inkson

2021 ◽  
Vol 247 ◽  
pp. 114676
Author(s):  
Lu Jin ◽  
Jun Tian ◽  
Shen Gao ◽  
Peng Xie ◽  
Mohsen Akbarzadeh ◽  
...  

2021 ◽  
Vol 11 (18) ◽  
pp. 8593
Author(s):  
Pier Giuseppe Anselma ◽  
Marco Del Prete ◽  
Giovanni Belingardi

Preserving high-voltage battery pack lifetime represents a key issue in hybrid electric vehicles (HEVs). Temperature has remarkably major impacts on battery lifetime and implementing HEV thermal and energy management approaches to enhance fuel economy while preserving battery lifetime at various temperatures still represents an open challenge. This paper introduces an optimization driven methodology to tune the parameters of thermal and energy on-board rule-based control approaches of a parallel through-the-road plug-in HEV. Particle swarm optimization is implemented to this end and the calibration objective involves minimizing HEV operative costs concerning energy consumption and battery degradation over the entire vehicle lifetime for various ambient temperatures, driving conditions, payload conditions, and cabin conditioning system states. Numerical models are implemented that can estimate the evolution over time of the state of charge, state of health, and temperature of HEV high-voltage battery packs. Obtained results suggest that the calibrated thermal and energy management strategy tends to reduce pure electric operation as the ambient temperature progressively increases beyond 30 °C. The consequent longer internal combustion engine operation entails a gradual increase in the overall vehicle energy demand. At a 36 °C ambient temperature, the HEV consumes 2.3 times more energy compared with the 15 °C reference value. Moreover, activating the cabin conditioning system seems beneficial for overall plug-in HEV energy consumption at high ambient temperatures. The presented methodology can contribute to easing and accelerating the development process for energy and thermal management systems of HEVs.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1556
Author(s):  
Khaled Sehil ◽  
Basem Alamri ◽  
Mohammed Alqarni ◽  
Abdulhafid Sallama ◽  
Mohamed Darwish

This paper examines the specifications of lithium battery cells, which are considered one of the most vital sources for electrical energy storage units. The specifications have been covered to associate battery performance with its usage for electrically powered motor vehicles. With the motivation of rapid deployment of electric vehicles (EVs) around the world, the key contribution of this study is to provide a comparative investigation of well-known commercially available Li-ion battery cells used as a pack for electric race car. Five lithium cells from different manufacturers were analyzed for start voltage, end voltage, current, and the use of active cooling under different test conditions. Thermal imaging was used to provide more comprehensive analysis of tested battery packs. The outcomes of this experimental investigation are described in the sections below in the order in which the analyses were conducted. The key findings of this study are presented in the conclusion section.


2021 ◽  
Vol 320 ◽  
pp. 01014
Author(s):  
Vladimir Kozlovsky

The paper presents development results of the complex of simulation mathematical models of real-time and algorithms for a semi-natural test bench of the control system of a high-voltage storage battery of hybrid vehicles. They are designed to control the physical model of the test bench, simulating the characteristics of the cells of the high-voltage storage battery and other components that make up the high-voltage storage battery. This study aims to implement a complex of mathematical models and software with the required accuracy of parameters and signals that simulate the behavior of a real high-voltage battery. That intended for the development and testing of mathematical algorithms and software for the control system of a high-voltage battery of a hybrid vehicle. The main features of the developed models are an imitation of the characteristics of the cells of a high-voltage storage battery with the ability to set the initial state-of-charge (SOC) and change the charge during the operation of the model. The data were used to develop and evaluate a mathematical model of a high-voltage storage battery cell. The operating result contributes to the acceleration of the software development process for electrical complexes and control systems for high-voltage batteries for hybrid vehicles.


2021 ◽  
Vol 1 (2) ◽  
pp. 36-50
Author(s):  
A.N. Malyshev ◽  
◽  
YE.A. Grunenkov ◽  
V V. Debelov ◽  
M.D. Mizin ◽  
...  

The paper presents the results of mathematical and simulation modeling, as well as calculated and experimental dependencies, which make it possible to evaluate the operation of the insulation resistance monitoring system of the high-voltage power grid of a hybrid vehicle. The work also provides circuits for measuring insulation resistance, a mathematical model in the MATLAB Sim-ulink environment, and the peculiarities of the operation of the software and hardware simulation complex. The aim of the work is to obtain the most reliable mathematical and physical model of insulation resistance, to determine the architecture of a high voltage battery with the IRM system included in it, to identify the key functions and characteristics of the IRM system, to test the simulation system. The introduction justifies the importance of the IRM system and provides references to standards that govern the requirements for measuring and identifying utility faults. The block diagram of the high voltage battery control system is presented. The composition of its main elements is described. The functions and key characteristics of the IRM system are considered, typical characteristics of insulation monitoring systems are given. A schematic diagram of determining the insulation resistance of conductors and an electric circuit is clearly considered. An equivalent circuit of a differential DC amplifier with a unipolar power supply is presented, which is used to amplify small differential voltages on a shunt when changing large common-mode voltages, which is part of the measuring circuit. Mathematical and simulation modeling was carried out to evaluate the method for calculating the insulation resistance according to the well-known scheme, which is used when measuring using the three-voltmeter method. There was considered the mode of checking the the insulation control system, when several test procedures performed containing simulation of the fault and operating condition of the insulation by connecting and measuring the test resistance. The results of physical simulation of the IRM system and measurement of insulation resistance, voltage between each of the high voltage supply wires and the high voltage battery case, voltage between the wires, battery voltage were obtained. The actual insulation resistance was calculated. The conclusions explain the effectiveness of physical and simulation modeling, obtaining a reliable mathematical model and low error in modeling the insulation characteristics.


Powertrain ◽  
2021 ◽  
pp. 779-805
Author(s):  
Matthias Hütter ◽  
Ernst Sumann ◽  
Heinz Petutschnig ◽  
Helfried Sorger

Sign in / Sign up

Export Citation Format

Share Document