Applying Marcus's Theory to Electron Transfer in Vivo

2007 ◽  
pp. 591-600 ◽  
Author(s):  
George Mclendon ◽  
Sonja Komar-Panicucci ◽  
Shelby Hatch
Keyword(s):  
2017 ◽  
Vol 5 (3) ◽  
pp. 1311-1311
Author(s):  
Fang Liao ◽  
Xun Song ◽  
Siwei Yang ◽  
Chenyao Hu ◽  
Lin He ◽  
...  

Correction for ‘Photoinduced electron transfer of poly(o-phenylenediamine)–rhodamine B copolymer dots: application in ultrasensitive detection of nitrite in vivo’ by Fang Liao et al., J. Mater. Chem. A, 2015, 3, 7568–7574.


2017 ◽  
Vol 63 (10) ◽  
pp. 857-863 ◽  
Author(s):  
Maria S. Stietz ◽  
Christina Lopez ◽  
Osasumwen Osifo ◽  
Marcelo E. Tolmasky ◽  
Silvia T. Cardona

There are hundreds of essential genes in multidrug-resistant bacterial genomes, but only a few of their products are exploited as antibacterial targets. An example is the electron transfer flavoprotein (ETF), which is required for growth and viability in Burkholderia cenocepacia. Here, we evaluated ETF as an antibiotic target for Burkholderia cepacia complex (Bcc). Depletion of the bacterial ETF during infection of Caenorhabditis elegans significantly extended survival of the nematodes, proving that ETF is essential for survival of B. cenocepacia in this host model. In spite of the arrest in respiration in ETF mutants, the inhibition of etf expression did not increase the formation of persister cells, when treated with high doses of ciprofloxacin or meropenem. To test if etf translation could be inhibited by RNA interference, antisense oligonucleotides that target the etfBA operon were synthesized. One antisense oligonucleotide was effective in inhibiting etfB translation in vitro but not in vivo, highlighting the challenge of reduced membrane permeability for the design of drugs against B. cenocepacia. This work contributes to the validation of ETF of B. cenocepacia as a target for antibacterial therapy and demonstrates the utility of a C. elegans liquid killing assay to validate gene essentiality in an in vivo infection model.


2022 ◽  
pp. 193229682110706
Author(s):  
Yutaro Inoue ◽  
Yasuhide Kusaka ◽  
Kotaro Shinozaki ◽  
Inyoung Lee ◽  
Koji Sode

Background: The bacterial derived flavin adenine dinucleotide (FAD)-dependent glucose dehydrogenase (FADGDH) is the most promising enzyme for the third-generation principle-based enzyme sensor for continuous glucose monitoring (CGM). Due to the ability of the enzyme to transfer electrons directly to the electrode, recognized as direct electron transfer (DET)-type FADGDH, although no investigation has been reported about DET-type FADGDH employed on a miniaturized integrated electrode. Methods: The miniaturized integrated electrode was formed by sputtering gold (Au) onto a flexible film with 0.1 mm in thickness and divided into 3 parts. After an insulation layer was laminated, 3 openings for a working electrode, a counter electrode and a reference electrode were formed by dry etching. A reagent mix containing 1.2 × 10−4 Unit of DET-type FADGDH and carbon particles was deposited. The long-term stability of sensor was evaluated by continuous operation, and its performance was also evaluated in the presence of acetaminophen and the change in oxygen partial pressure (pO2) level. Results: The amperometric response of the sensor showed a linear response to glucose concentration up to 500 mg/dL without significant change of the response over an 11-day continuous measurement. Moreover, the effect of acetaminophen and pO2 on the response were negligible. Conclusions: These results indicate the superb potential of the DET-type FADGDH-based sensor with the combination of a miniaturized integrated electrode. Thus, the described miniaturized DET-type glucose sensor for CGM will be a promising tool for effective glycemic control. This will be further investigated using an in vivo study.


2021 ◽  
Author(s):  
Jae Kyu Lim ◽  
Ji-In Yang ◽  
Yun Jae Kim ◽  
Yeong-Jun Park ◽  
Yong Hwan Kim

Abstract Ferredoxin-dependent metabolic engineering of electron transfer circuits has been developed to enhance redox efficiency in the field of synthetic biology, e.g., for hydrogen production and for reduction of flavoproteins or NAD(P)+. Here, we present the bioconversion of carbon monoxide (CO) gas to formate via a synthetic CO:formate oxidoreductase (CFOR), designed as an enzyme complex for direct electron transfer between noninteracting CO dehydrogenase and formate dehydrogenase using an electron-transferring Fe-S fusion protein. The CFOR-introduced Thermococcus onnurineus mutant strains showed CO-dependent formate production in vivo and in vitro. The formate production rate from purified CFOR complex and specific formate productivity from the bioreactor were 348 ± 34 μmol/mg/min and 90.2 ± 20.4 mmol/g-cells/h, respectively. The CO-dependent CO2 reduction/formate production activity of synthetic CFOR was confirmed, indicating that direct electron transfer between two unrelated dehydrogenases was feasible via mediation of the FeS-FeS fusion protein.


2019 ◽  
Vol 85 (11) ◽  
Author(s):  
Rongshui Wang ◽  
Jihong Yi ◽  
Jinmeng Shang ◽  
Wenjun Yu ◽  
Zhifeng Li ◽  
...  

ABSTRACT Agrobacterium tumefaciens S33 degrades nicotine via a novel hybrid of the pyridine and the pyrrolidine pathways. The hybrid pathway consists of at least six steps involved in oxidoreductive reactions before the N-heterocycle can be broken down. Collectively, the six steps allow electron transfer from nicotine and its intermediates to the final acceptor O2 via the electron transport chain (ETC). 6-Hydroxypseudooxynicotine oxidase, renamed 6-hydroxypseudooxynicotine dehydrogenase in this study, has been characterized as catalyzing the fourth step using the artificial electron acceptor 2,6-dichlorophenolindophenol. Here, we used biochemical, genetic, and liquid chromatography-mass spectrometry (LC-MS) analyses to determine that 6-hydroxypseudooxynicotine dehydrogenase utilizes the electron transfer flavoprotein (EtfAB) as the physiological electron acceptor to catalyze the dehydrogenation of pseudooxynicotine, an analogue of the true substrate 6-hydroxypseudooxynicotine, in vivo, into 3-succinoyl-semialdehyde-pyridine. NAD(P)+, O2, and ferredoxin could not function as electron acceptors. The oxygen atom in the aldehyde group of the product 3-succinoyl-semialdehyde-pyridine was verified to be derived from H2O. Disruption of the etfAB genes in the nicotine-degrading gene cluster decreased the growth rate of A. tumefaciens S33 on nicotine but not on 6-hydroxy-3-succinoylpyridine, an intermediate downstream of the hybrid pathway, indicating the requirement of EtfAB for efficient nicotine degradation. The electrons were found to be further transferred from the reduced EtfAB to coenzyme Q by the catalysis of electron transfer flavoprotein:ubiquinone oxidoreductase. These results aid in an in-depth understanding of the electron transfer process and energy metabolism involved in the nicotine oxidation and provide novel insights into nicotine catabolism in bacteria. IMPORTANCE Nicotine has been studied as a model for toxic N-heterocyclic aromatic compounds. Microorganisms can catabolize nicotine via various pathways and conserve energy from its oxidation. Although several oxidoreductases have been characterized to participate in nicotine degradation, the electron transfer involved in these processes is poorly understood. In this study, we found that 6-hydroxypseudooxynicotine dehydrogenase, a key enzyme in the hybrid pyridine and pyrrolidine pathway for nicotine degradation in Agrobacterium tumefaciens S33, utilizes EtfAB as a physiological electron acceptor. Catalyzed by the membrane-associated electron transfer flavoprotein:ubiquinone oxidoreductase, the electrons are transferred from the reduced EtfAB to coenzyme Q, which then could enter into the classic ETC. Thus, the route for electron transport from the substrate to O2 could be constructed, by which ATP can be further sythesized via chemiosmosis to support the baterial growth. These findings provide new knowledge regarding the catabolism of N-heterocyclic aromatic compounds in microorganisms.


ChemBioChem ◽  
2015 ◽  
Vol 16 (5) ◽  
pp. 742-745 ◽  
Author(s):  
Jan Völler ◽  
Hernan Biava ◽  
Beate Koksch ◽  
Peter Hildebrandt ◽  
Nediljko Budisa

Sign in / Sign up

Export Citation Format

Share Document