scholarly journals 6-Hydroxypseudooxynicotine Dehydrogenase Delivers Electrons to Electron Transfer Flavoprotein during Nicotine Degradation by Agrobacterium tumefaciens S33

2019 ◽  
Vol 85 (11) ◽  
Author(s):  
Rongshui Wang ◽  
Jihong Yi ◽  
Jinmeng Shang ◽  
Wenjun Yu ◽  
Zhifeng Li ◽  
...  

ABSTRACT Agrobacterium tumefaciens S33 degrades nicotine via a novel hybrid of the pyridine and the pyrrolidine pathways. The hybrid pathway consists of at least six steps involved in oxidoreductive reactions before the N-heterocycle can be broken down. Collectively, the six steps allow electron transfer from nicotine and its intermediates to the final acceptor O2 via the electron transport chain (ETC). 6-Hydroxypseudooxynicotine oxidase, renamed 6-hydroxypseudooxynicotine dehydrogenase in this study, has been characterized as catalyzing the fourth step using the artificial electron acceptor 2,6-dichlorophenolindophenol. Here, we used biochemical, genetic, and liquid chromatography-mass spectrometry (LC-MS) analyses to determine that 6-hydroxypseudooxynicotine dehydrogenase utilizes the electron transfer flavoprotein (EtfAB) as the physiological electron acceptor to catalyze the dehydrogenation of pseudooxynicotine, an analogue of the true substrate 6-hydroxypseudooxynicotine, in vivo, into 3-succinoyl-semialdehyde-pyridine. NAD(P)+, O2, and ferredoxin could not function as electron acceptors. The oxygen atom in the aldehyde group of the product 3-succinoyl-semialdehyde-pyridine was verified to be derived from H2O. Disruption of the etfAB genes in the nicotine-degrading gene cluster decreased the growth rate of A. tumefaciens S33 on nicotine but not on 6-hydroxy-3-succinoylpyridine, an intermediate downstream of the hybrid pathway, indicating the requirement of EtfAB for efficient nicotine degradation. The electrons were found to be further transferred from the reduced EtfAB to coenzyme Q by the catalysis of electron transfer flavoprotein:ubiquinone oxidoreductase. These results aid in an in-depth understanding of the electron transfer process and energy metabolism involved in the nicotine oxidation and provide novel insights into nicotine catabolism in bacteria. IMPORTANCE Nicotine has been studied as a model for toxic N-heterocyclic aromatic compounds. Microorganisms can catabolize nicotine via various pathways and conserve energy from its oxidation. Although several oxidoreductases have been characterized to participate in nicotine degradation, the electron transfer involved in these processes is poorly understood. In this study, we found that 6-hydroxypseudooxynicotine dehydrogenase, a key enzyme in the hybrid pyridine and pyrrolidine pathway for nicotine degradation in Agrobacterium tumefaciens S33, utilizes EtfAB as a physiological electron acceptor. Catalyzed by the membrane-associated electron transfer flavoprotein:ubiquinone oxidoreductase, the electrons are transferred from the reduced EtfAB to coenzyme Q, which then could enter into the classic ETC. Thus, the route for electron transport from the substrate to O2 could be constructed, by which ATP can be further sythesized via chemiosmosis to support the baterial growth. These findings provide new knowledge regarding the catabolism of N-heterocyclic aromatic compounds in microorganisms.

2017 ◽  
Vol 83 (17) ◽  
Author(s):  
Wenjun Yu ◽  
Rongshui Wang ◽  
Haiyan Huang ◽  
Huijun Xie ◽  
Shuning Wang

ABSTRACT Agrobacterium tumefaciens S33 can grow with nicotine as the sole source of carbon, nitrogen, and energy via a novel hybrid of the pyridine pathway and the pyrrolidine pathway. Characterization of the enzymes involved in the hybrid pathway is important for understanding its biochemical mechanism. Here, we report that the molybdenum-containing nicotine dehydrogenase (NdhAB), which catalyzes the initial step of nicotine degradation, is located in the periplasm of strain S33, while the 6-hydroxynicotine oxidase and 6-hydroxypseudooxynicoine oxidase are in the cytoplasm. This is consistent with the fact that NdhA has a Tat signal peptide. Interestingly, an open reading frame (ORF) adjacent to the ndhAB gene was verified to encode a copper-containing electron carrier, pseudoazurin (Paz), which has a signal peptide typical of bacterial Paz proteins. Both were transported into the periplasm after being produced in the cytoplasm. We purified NdhAB from the periplasmic fraction of strain S33 and found that with Paz as the physiological electron acceptor, NdhAB catalyzed the hydroxylation of nicotine at a specific rate of 110.52 ± 8.09 μmol · min−1 · mg of protein−1, where the oxygen atom in the hydroxyl group of the product 6-hydroxynicotine was derived from H2O. The apparent Km values for nicotine and Paz were 1.64 ± 0.07 μM and 3.61 ± 0.23 μM, respectively. NAD(P)+, O2, and ferredoxin could not serve as electron acceptors. Disruption of the paz gene disabled the strain for nicotine degradation, indicating that Paz is required for nicotine catabolism in the strain. These findings help our understanding of electron transfer during nicotine degradation in bacteria. IMPORTANCE Nicotine is a toxic and addictive N-heterocyclic aromatic alkaloid produced in tobacco. Its catabolism in organisms and degradation in tobacco wastes have become major concerns for human health and the environment. Bacteria usually decompose nicotine using the classical strategy of hydroxylating the pyridine ring with the help of activated oxygen by nicotine dehydrogenase, which binds one molybdopterin, two [2Fe2S] clusters, and usually one flavin adenine dinucleotide (FAD) as well. However, the physiological electron acceptor for the reaction is still unknown. In this study, we found that the two-component nicotine dehydrogenase from Agrobacterium tumefaciens S33, naturally lacking an FAD-binding domain, is located in the periplasmic space and uses a copper-containing electron carrier, pseudoazurin, as its physiological electron acceptor. We report here the role of pseudoazurin in a reaction catalyzed by a molybdopterin-containing hydroxylase occurring in the periplasmic space. These results provide new biochemical knowledge on microbial degradation of N-heterocyclic aromatic compounds.


2017 ◽  
Vol 63 (10) ◽  
pp. 857-863 ◽  
Author(s):  
Maria S. Stietz ◽  
Christina Lopez ◽  
Osasumwen Osifo ◽  
Marcelo E. Tolmasky ◽  
Silvia T. Cardona

There are hundreds of essential genes in multidrug-resistant bacterial genomes, but only a few of their products are exploited as antibacterial targets. An example is the electron transfer flavoprotein (ETF), which is required for growth and viability in Burkholderia cenocepacia. Here, we evaluated ETF as an antibiotic target for Burkholderia cepacia complex (Bcc). Depletion of the bacterial ETF during infection of Caenorhabditis elegans significantly extended survival of the nematodes, proving that ETF is essential for survival of B. cenocepacia in this host model. In spite of the arrest in respiration in ETF mutants, the inhibition of etf expression did not increase the formation of persister cells, when treated with high doses of ciprofloxacin or meropenem. To test if etf translation could be inhibited by RNA interference, antisense oligonucleotides that target the etfBA operon were synthesized. One antisense oligonucleotide was effective in inhibiting etfB translation in vitro but not in vivo, highlighting the challenge of reduced membrane permeability for the design of drugs against B. cenocepacia. This work contributes to the validation of ETF of B. cenocepacia as a target for antibacterial therapy and demonstrates the utility of a C. elegans liquid killing assay to validate gene essentiality in an in vivo infection model.


2015 ◽  
Vol 51 (96) ◽  
pp. 17128-17131 ◽  
Author(s):  
B. Limburg ◽  
E. Bouwman ◽  
S. Bonnet

Unidirectional photocatalytic electron transfer from a hydrophilic electron donor encapsulated in the interior of a liposome, to a hydrophilic electron acceptor on the other side of the membrane, has been achieved using the simple membrane-soluble electron relay 1-methoxy-N-methylphenazinium (MMP+).


2018 ◽  
Vol 200 (19) ◽  
Author(s):  
Fernanda Jiménez Otero ◽  
Chi Ho Chan ◽  
Daniel R. Bond

ABSTRACTAt least five gene clusters in theGeobacter sulfurreducensgenome encode putative “electron conduits” implicated in electron transfer across the outer membrane, each containing a periplasmic multihemec-type cytochrome, integral outer membrane anchor, and outer membrane redox lipoprotein(s). Markerless single-gene-cluster deletions and all possible multiple-deletion combinations were constructed and grown with soluble Fe(III) citrate, Fe(III) and Mn(IV) oxides, and graphite electrodes poised at +0.24 V and −0.1 V versus the standard hydrogen electrode (SHE). Different gene clusters were necessary for reduction of each electron acceptor. During metal oxide reduction, deletion of the previously describedomcBCcluster caused defects, but deletion of additional components in an ΔomcBCbackground, such asextEFG, were needed to produce defects greater than 50% compared to findings with the wild type. Deletion of all five gene clusters abolished all metal reduction. During electrode reduction, only the ΔextABCDmutant had a severe growth defect at both redox potentials, while this mutation did not affect Fe(III) oxide, Mn(IV) oxide, or Fe(III) citrate reduction. Some mutants containing only one cluster were able to reduce particular terminal electron acceptors better than the wild type, suggesting routes for improvement by targeting specific electron transfer pathways. Transcriptomic comparisons between fumarate and electrode-based growth conditions showed all of theseextclusters to be constitutive, and transcriptional analysis of the triple-deletion strain containing onlyextABCDdetected no significant changes in expression of genes encoding known redox proteins or pilus components. These genetic experiments reveal new outer membrane conduit complexes necessary for growth ofG. sulfurreducens, depending on the available extracellular electron acceptor.IMPORTANCEGram-negative metal-reducing bacteria utilize electron conduits, chains of redox proteins spanning the outer membrane, to transfer electrons to the extracellular surface. Only one pathway for electron transfer across the outer membrane ofGeobacter sulfurreducenshas been linked to Fe(III) reduction. However,G. sulfurreducensis able to respire a wide array of extracellular substrates. Here we present the first combinatorial genetic analysis of five different electron conduits via creation of new markerless deletion strains and complementation vectors. Multiple conduit gene clusters appear to have overlapping roles, including two that have never been linked to metal reduction. Another recently described cluster (ExtABCD) was the only electron conduit essential during electrode reduction, a substrate of special importance to biotechnological applications of this organism.


2014 ◽  
Vol 81 (2) ◽  
pp. 587-596 ◽  
Author(s):  
Marlén Pöritz ◽  
Christian L. Schiffmann ◽  
Gerd Hause ◽  
Ulrike Heinemann ◽  
Jana Seifert ◽  
...  

ABSTRACTPolyhalogenated aromatic compounds are harmful environmental contaminants and tend to persist in anoxic soils and sediments.Dehalococcoides mccartyistrain DCMB5, a strain originating from dioxin-polluted river sediment, was examined for its capacity to dehalogenate diverse chloroaromatic compounds. Strain DCMB5 used hexachlorobenzenes, pentachlorobenzenes, all three tetrachlorobenzenes, and 1,2,3-trichlorobenzene as well as 1,2,3,4-tetra- and 1,2,4-trichlorodibenzo-p-dioxin as electron acceptors for organohalide respiration. In addition, 1,2,3-trichlorodibenzo-p-dioxin and 1,3-, 1,2-, and 1,4-dichlorodibenzo-p-dioxin were dechlorinated, the latter to the nonchlorinated congener with a remarkably short lag phase of 1 to 4 days following transfer. Strain DCMB5 also dechlorinated pentachlorophenol and almost all tetra- and trichlorophenols. Tetrachloroethene was dechlorinated to trichloroethene and served as an electron acceptor for growth. To relate selected dechlorination activities to the expression of specific reductive dehalogenase genes, the proteomes of 1,2,3-trichlorobenzene-, pentachlorobenzene-, and tetrachloroethene-dechlorinating cultures were analyzed. Dcmb_86, an ortholog of the chlorobenzene reductive dehalogenase CbrA, was the most abundant reductive dehalogenase during growth with each electron acceptor, suggesting its pivotal role in organohalide respiration of strain DCMB5. Dcmb_1041 was specifically induced, however, by both chlorobenzenes, whereas 3 putative reductive dehalogenases, Dcmb_1434, Dcmb_1339, and Dcmb_1383, were detected only in tetrachloroethene-grown cells. The proteomes also harbored a type IV pilus protein and the components for its assembly, disassembly, and secretion. In addition, transmission electron microscopy of DCMB5 revealed an irregular mode of cell division as well as the presence of pili, indicating that pilus formation is a feature ofD. mccartyiduring organohalide respiration.


2020 ◽  
Vol 86 (21) ◽  
Author(s):  
Dominik K. Haja ◽  
Chang-Hao Wu ◽  
Olena Ponomarenko ◽  
Farris L. Poole ◽  
Graham N. George ◽  
...  

ABSTRACT Arsenate is a notorious toxicant that is known to disrupt multiple biochemical pathways. Many microorganisms have developed mechanisms to detoxify arsenate using the ArsC-type arsenate reductase, and some even use arsenate as a terminal electron acceptor for respiration involving arsenate respiratory reductase (Arr). ArsC-type reductases have been studied extensively, but the phylogenetically unrelated Arr system is less investigated and has not been characterized from Archaea. Here, we heterologously expressed the genes encoding Arr from the crenarchaeon Pyrobaculum aerophilum in the euryarchaeon Pyrococcus furiosus, both of which grow optimally near 100°C. Recombinant P. furiosus was grown on molybdenum (Mo)- or tungsten (W)-containing medium, and two types of recombinant Arr enzymes were purified, one containing Mo (Arr-Mo) and one containing W (Arr-W). Purified Arr-Mo had a 140-fold higher specific activity in arsenate [As(V)] reduction than Arr-W, and Arr-Mo also reduced arsenite [As(III)]. The P. furiosus strain expressing Arr-Mo (the Arr strain) was able to use arsenate as a terminal electron acceptor during growth on peptides. In addition, the Arr strain had increased tolerance compared to that of the parent strain to arsenate and also, surprisingly, to arsenite. Compared to the parent, the Arr strain accumulated intracellularly almost an order of magnitude more arsenic when cells were grown in the presence of arsenite. X-ray absorption spectroscopy (XAS) results suggest that the Arr strain of P. furiosus improves its tolerance to arsenite by increasing production of less-toxic arsenate and nontoxic methylated arsenicals compared to that by the parent. IMPORTANCE Arsenate respiratory reductases (Arr) are much less characterized than the detoxifying arsenate reductase system. The heterologous expression and characterization of an Arr from Pyrobaculum aerophilum in Pyrococcus furiosus provides new insights into the function of this enzyme. From in vivo studies, production of Arr not only enabled P. furiosus to use arsenate [As(V)] as a terminal electron acceptor, it also provided the organism with a higher resistance to arsenate and also, surprisingly, to arsenite [As(III)]. In contrast to the tungsten-containing oxidoreductase enzymes natively produced by P. furiosus, recombinant P. aerophilum Arr was much more active with molybdenum than with tungsten. It is also, to our knowledge, the only characterized Arr to be active with both molybdenum and tungsten in the active site.


2012 ◽  
Vol 78 (19) ◽  
pp. 6987-6995 ◽  
Author(s):  
Misha G. Mehta-Kolte ◽  
Daniel R. Bond

ABSTRACTThe current understanding of dissimilatory metal reduction is based primarily on isolates from the proteobacterial generaGeobacterandShewanella. However, environments undergoing active Fe(III) reduction often harbor less-well-studied phyla that are equally abundant. In this work, electrochemical techniques were used to analyze respiratory electron transfer by the only known Fe(III)-reducing representative of theAcidobacteria,Geothrix fermentans. In contrast to previously characterized metal-reducing bacteria, which typically reach maximal rates of respiration at electron acceptor potentials of 0 V versus standard hydrogen electrode (SHE),G. fermentansrequired potentials as high as 0.55 V to respire at its maximum rate. In addition,G. fermentanssecreted two different soluble redox-active electron shuttles with separate redox potentials (−0.2 V and 0.3 V). The compound with the lower midpoint potential, responsible for 20 to 30% of electron transfer activity, was riboflavin. The behavior of the higher-potential compound was consistent with hydrophilic UV-fluorescent molecules previously found inG. fermentanssupernatants. Both electron shuttles were also produced when cultures were grown with Fe(III), but not when fumarate was the electron acceptor. This study reveals thatGeothrixis able to take advantage of higher-redox-potential environments, demonstrates that secretion of flavin-based shuttles is not confined toShewanella, and points to the existence of high-potential-redox-active compounds involved in extracellular electron transfer. Based on differences between the respiratory strategies ofGeothrixandGeobacter, these two groups of bacteria could exist in distinctive environmental niches defined by redox potential.


2017 ◽  
Vol 83 (9) ◽  
Author(s):  
Majken Sønderholm ◽  
Kasper Nørskov Kragh ◽  
Klaus Koren ◽  
Tim Holm Jakobsen ◽  
Sophie E. Darch ◽  
...  

ABSTRACT Alginate beads represent a simple and highly reproducible in vitro model system for diffusion-limited bacterial growth. In this study, alginate beads were inoculated with Pseudomonas aeruginosa and followed for up to 72 h. Confocal microscopy revealed that P. aeruginosa formed dense clusters similar in size to in vivo aggregates observed ex vivo in cystic fibrosis lungs and chronic wounds. Bacterial aggregates primarily grew in the bead periphery and decreased in size and abundance toward the center of the bead. Microsensor measurements showed that the O2 concentration decreased rapidly and reached anoxia ∼100 μm below the alginate bead surface. This gradient was relieved in beads supplemented with NO3 − as an alternative electron acceptor allowing for deeper growth into the beads. A comparison of gene expression profiles between planktonic and alginate-encapsulated P. aeruginosa confirmed that the bacteria experienced hypoxic and anoxic growth conditions. Furthermore, alginate-encapsulated P. aeruginosa exhibited a lower respiration rate than the planktonic counterpart and showed a high tolerance toward antibiotics. The inoculation and growth of P. aeruginosa in alginate beads represent a simple and flexible in vivo-like biofilm model system, wherein bacterial growth exhibits central features of in vivo biofilms. This was observed by the formation of small cell aggregates in a secondary matrix with O2-limited growth, which was alleviated by the addition of NO3 − as an alternative electron acceptor, and by reduced respiration rates, as well as an enhanced tolerance to antibiotic treatment. IMPORTANCE Pseudomonas aeruginosa has been studied intensively for decades due to its involvement in chronic infections, such as cystic fibrosis and chronic wounds, where it forms biofilms. Much research has been dedicated to biofilm formation on surfaces; however, in chronic infections, most biofilms form small aggregates of cells not attached to a surface, but embedded in host material. In this study, bacteria were encapsulated in small alginate beads and formed aggregates similar to what is observed in chronic bacterial infections. Our findings show that aggregates are exposed to steep oxygen gradients, with zones of oxygen depletion, and that nitrate may serve as an alternative to oxygen, enabling growth in oxygen-depleted zones. This is important, as slow growth under low-oxygen conditions may render the bacteria tolerant toward antibiotics. This model provides an alternative to surface biofilm models and adds to the comprehension that biofilms do not depend on a surface for formation.


2014 ◽  
Vol 197 (5) ◽  
pp. 893-904 ◽  
Author(s):  
Thomas Kruse ◽  
Bram A. van de Pas ◽  
Ariane Atteia ◽  
Klaas Krab ◽  
Wilfred R. Hagen ◽  
...  

Desulfitobacterium dehalogenansis able to grow by organohalide respiration using 3-chloro-4-hydroxyphenyl acetate (Cl-OHPA) as an electron acceptor. We used a combination of genome sequencing, biochemical analysis of redox active components, and shotgun proteomics to study elements of the organohalide respiratory electron transport chain. The genome ofDesulfitobacterium dehalogenansJW/IU-DC1Tconsists of a single circular chromosome of 4,321,753 bp with a GC content of 44.97%. The genome contains 4,252 genes, including six rRNA operons and six predicted reductive dehalogenases. One of the reductive dehalogenases, CprA, is encoded by a well-characterizedcprTKZEBACDgene cluster. Redox active components were identified in concentrated suspensions of cells grown on formate and Cl-OHPA or formate and fumarate, using electron paramagnetic resonance (EPR), visible spectroscopy, and high-performance liquid chromatography (HPLC) analysis of membrane extracts. In cell suspensions, these components were reduced upon addition of formate and oxidized after addition of Cl-OHPA, indicating involvement in organohalide respiration. Genome analysis revealed genes that likely encode the identified components of the electron transport chain from formate to fumarate or Cl-OHPA. Data presented here suggest that the first part of the electron transport chain from formate to fumarate or Cl-OHPA is shared. Electrons are channeled from an outward-facing formate dehydrogenase via menaquinones to a fumarate reductase located at the cytoplasmic face of the membrane. When Cl-OHPA is the terminal electron acceptor, electrons are transferred from menaquinones to outward-facing CprA, via an as-yet-unidentified membrane complex, and potentially an extracellular flavoprotein acting as an electron shuttle between the quinol dehydrogenase membrane complex and CprA.


Sign in / Sign up

Export Citation Format

Share Document