The Use of Compact Tension Specimens to Measure Slow Crack Growth in Continuous-Fiber Composites at Elevated Temperatures

Author(s):  
C. A. Lewinsohn ◽  
C. H. Henager ◽  
R. H. Jones
1987 ◽  
Vol 109 (4) ◽  
pp. 314-318 ◽  
Author(s):  
D. F. Watt ◽  
Pamela Nadin ◽  
S. B. Biner

This report details the development of a three-stage fracture toughness testing procedure used to study the effect of tempering temperature on toughness in 01 tool steel. Modified compact tension specimens were used in which the fatigue precracking stage in the ASTM E-399 Procedure was replaced by stable precracking, followed by a slow crack growth. The specimen geometry has been designed to provide a region where slow crack growth can be achieved in brittle materials. Three parameters, load, crack opening displacement, and time have been monitored during the testing procedure and a combination of heat tinting and a compliance equation have been used to identify the position of the crack front. Significant KIC results have been obtained using a modified ASTM fracture toughness equation. An inverse relationship between KIC and hardness has been measured.


1975 ◽  
Vol 6 (4) ◽  
pp. 707-716 ◽  
Author(s):  
A. G. Evans ◽  
L. R. Russell ◽  
D. W. Richerson

Author(s):  
Sung R. Choi ◽  
D. Calvin Faucett ◽  
Brenna Skelley

An extensive experimental work for Pyroceram™ 9606 glass-ceramic was conducted to determine static fatigue at ambient temperature in distilled water. This work was an extension and companion of the previous work conducted in dynamic fatigue. Four different applied stresses ranging from 120 to 170 MPa was incorporated with a total of 20–23 test specimens used at each of four applied stresses. The slow crack growth parameters n and D were found to be n = 19 and D = 45 with a coefficient of correlation of rcoef = 0.9653. The Weibull modulus of time to failure was in a range of msf = 1.6 to 1.9 with an average of msf = 1.7±0.2. A life prediction using the previously-determined dynamic fatigue data was in excellent agreement with the static fatigue data. The life prediction approach was also applied to advanced monolithic ceramics and ceramic matrix composites based on their dynamic and static fatigue data determined at elevated temperatures. All of these results indicated that a SCG mechanism governed by a power-law crack-growth formulation was operative, a commonality of slow crack growth in these materials systems.


Author(s):  
Sung R. Choi ◽  
D. Calvin Faucett ◽  
Brenna Skelley

An extensive experimental work for Pyroceram™ 9606 glass–ceramic was conducted to determine static fatigue at ambient temperature in distilled water. This work was an extension and companion of the previous work conducted in dynamic fatigue. Four different applied stresses ranging from 120 to 170 MPa was incorporated with a total of 20–23 test specimens used at each of four applied stresses. The slow crack growth (SCG) parameters n and D were found to be n = 19 and D = 45 with a coefficient of correlation of rcoef = 0.9653. The Weibull modulus of time to failure was in a range of msf = 1.6–1.9 with an average of msf = 1.7 ± 0.2. A life prediction using the previously determined dynamic fatigue data was in excellent agreement with the static fatigue data. The life prediction approach was also applied to advanced monolithic ceramics and ceramic matrix composites (CMCs) based on their dynamic and static fatigue data determined at elevated temperatures. All of these results indicated that a SCG mechanism governed by a power-law crack growth formulation was operative, a commonality of SCG in these materials systems.


Sign in / Sign up

Export Citation Format

Share Document