applied stresses
Recently Published Documents


TOTAL DOCUMENTS

234
(FIVE YEARS 38)

H-INDEX

21
(FIVE YEARS 2)

Soft Matter ◽  
2022 ◽  
Author(s):  
Ishan Srivastava ◽  
Leo Silbert ◽  
Jeremy Lechman ◽  
Gary Grest

Flowing granular materials often abruptly arrest if not driven by sufficient applied stresses. Such abrupt cessation of motion can be economically expensive in industrial materials handling and processing, and is...


Author(s):  
J. I. Perry ◽  
S. M. Walley

AbstractThe transport of energetic materials—whether by truck over rough terrain, or attached to the undercarriage of a high-performance jet aircraft—carries a certain level of inherent risk as the repeatedly applied stresses from vibration may lead to heating, mechanical degradation, and potentially even the triggering of an ignition event. Increasing knowledge of the underlying physics which control ignition is allowing us to better understand, and thus reduce, the risk of a catastrophic event occurring. The Apollo and Space Shuttle programmes provided motivation for research into the topic in the 1960s and 1970s, and some recent studies have focussed on the grain-scale physics of ignition. However, much of the useful insight has arisen from work with other primary applications in mind. Therefore, this review aims to bring together literature from several fields, with the intention of better understanding vibration-induced heating (VIH) phenomena in energetic materials. Sensitivity, VIH in viscoelastic polymers and inert composites, and a technique known as vibrothermography which uses VIH to detect cracks, are all considered where relevant read-across can be found. Often being viscoelastic materials and composites with complex rheology, energetic materials subjected to vibrational loading tend to warm up, with potential for even greater temperature rises due to anisotropy-driven localised heating mechanisms. Binders soften as temperature rises, and the chance of damage increases, which may lead to runaway heating and thermal failure (if mechanical failure does not occur first).


Metals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1610
Author(s):  
Satoshi Utada ◽  
Lucille Després ◽  
Jonathan Cormier

Very high temperature creep properties of twelve different Ni-based single crystal superalloys have been investigated at 1250 °C and under different initial applied stresses. The creep strength at this temperature is mainly controlled by the remaining γ′ volume fraction. Other parameters such as the γ′ precipitate after microstructure evolution and the γ/γ′ lattice parameter mismatch seem to affect the creep strength to a lesser degree in these conditions. The Norton Law creep exponent lies in the range 6–9 for most of the alloys studied, suggesting that dislocation glide and climb are the rate limiting deformation mechanisms. Damage mechanisms in these extreme conditions comprise creep strain accumulation leading to pronounced necking and to recrystallization in the most severely deformed sections of the specimens.


2021 ◽  
pp. 1-12

Abstract Alloying, heat treating, and work hardening are widely used to control material properties, and though they take different approaches, they all focus on imperfections of one type or other. This chapter provides readers with essential background on these material imperfections and their relevance in design and manufacturing. It begins with a review of compositional impurities, the physical arrangement of atoms in solid solution, and the factors that determine maximum solubility. It then describes different types of structural imperfections, including point, line, and planar defects, and how they respond to applied stresses and strains. The chapter makes extensive use of graphics to illustrate crystal lattice structures and related concepts such as vacancies and interstitial sites, ion migration, volume expansion, antisite defects, edge and screw dislocations, slip planes, twinning planes, and dislocation passage through precipitates. It also points out important structure-property correlations.


2021 ◽  
Author(s):  
Takaaki Sato ◽  
Zachary Milne ◽  
Masahiro Nomura ◽  
Naruo Sasaki ◽  
Robert Carpick ◽  
...  

Abstract The behavior of materials in sliding contact is challenging to determine since the interface is normally hidden from view. Using a custom microfabricated device, we conducted in situ, ultrahigh vacuum transmission electron microscope measurements of crystalline silver nanocontacts under combined tension and shear, permitting simultaneous observation of contact forces and contact width. While classically, silver exhibits substantial sliding-induced plastic junction growth, the nanocontacts exhibit only limited plastic deformation despite high applied stresses. This difference arises from the nanocontacts’ high strength, as we find the von Mises stresses at yield points approach the ideal strength of silver. We attributed this to the nanocontacts’ nearly defect-free nature and small size. The contacts also separate unstably, with pull-off forces well below classical predictions for rupture under pure tension. This provides in situ confirmation that shearing reduces nanoscale pull-off forces, consistent with recent theoretical predictions but never before directly observed.


2021 ◽  
Author(s):  
Qi Song ◽  
Xin Liu ◽  
Hui Wang ◽  
Xiaoting Wang ◽  
Yuxiang Ni ◽  
...  

Abstract Two-dimensional semiconductor material zirconium disulfide (ZrS2) monolayer is a new promising material with good prospects for nanoscale applications. Recently, a new zirconium disulfide (ZrS2) monolayer with a space group of 59_Pmmn has been successfully predicted. Using first-principles calculations, this new monolayer ZrS2 structure is obtained with stable indirect band gaps of 0.65 eV and 1.46 eV at the DFT-PBE (HSE06) functional levels, respectively. Strain engineering studies on ZrS2 monolayer show effective band gap modulation. The bandgap shows a linear regularity from narrow to wide under applied stresses (strain ranged from − 6% to + 8%). Young's modulus of elasticity of ZrS2 rectangular cells along the tensile directions (x-axis and y-axis) is 83.63 (N/m) and 63.61 (N/m) with Poisson's ratios of 0.09 and 0.07, respectively. The results of carrier mobility show that the electron mobility along the y-axis can reach 1.32×103 cm2V− 1s− 1. Besides, the order of magnitude of the light absorption coefficient in the ultraviolet spectral region is calculated to reach 2.0×105cm−1 for ZrS2 monolayers. Moreover, by regulating the bandgap under stress, some bandgaps of the stretched energy band exceed the free energy of 1.23 eV and possess a suitable energy band edge position. The results indicates that the new two-dimensional Pmmn-ZrS2 monolayer is a potential material for photovoltaic devices and photocatalytic water decomposition.


2021 ◽  
pp. 130651
Author(s):  
He Qin ◽  
Guangyu Yang ◽  
Tong Bai ◽  
Shuxia Ouyang ◽  
Wanqi Jie

2021 ◽  
Vol 8 ◽  
Author(s):  
Dongye Yang ◽  
Wenqi Tian ◽  
Xinqi Zhang ◽  
Ke Si ◽  
Jiuxiao Li

This study focuses on the microstructure characteristics and tensile and creep properties of a near α high temperature Ti-6.6Al-4.6Sn-4.6Zr-0.9Nb-1.0Mo-0.32Si alloy. Microstructure characteristics were quantitatively investigated using optical microscopy, scanning electron microscope, and transmission electron microscopy. Tensile properties were carried out at room and high temperature. Creep properties were detected under applied stresses ranging from 100–350 MPa at 873–973 K, respectively. Results showed that Widmanstätten microstructure was obtained after hot forged and heat treatment. The strength decreases and the elongation rises with temperature increasing. The ultimate strength and elongation were 1010 MPa, 12% at room temperature, and 620 MPa, 20% at 923 K, respectively. The steady state creep rates rise correspondingly with stress and temperature. Stress exponents are measured within the range of 3.0–3.5. Thus, the creep mechanism is diffusion-controlled viscous glide of dislocation. Ti3Al precipitates are observed. The boundaries and precipitates can obstruct dislocation movement to improve the creep properties. Fracture mechanism of creep is intergranular. The creep mechanism varied from climb of dislocation to sliding of dislocation solution.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3567
Author(s):  
Faiza Faiza ◽  
Abraiz Khattak ◽  
Safi Ullah Butt ◽  
Kashif Imran ◽  
Abasin Ulasyar ◽  
...  

Silicone rubber is a promising insulating material that has been performing well for different insulating and dielectric applications. However, in outdoor applications, environmental stresses cause structural and surface degradations that diminish its insulating properties. This effect of degradation can be reduced with the addition of a suitable filler to the polymer chains. For the investigation of structural changes and hydrophobicity four different systems were fabricated, including neat silicone rubber, a micro composite (with 15% micro-silica filler), and nanocomposites (with 2.5% and 5% nanosilica filler) by subjecting them to various hydrothermal conditions. In general, remarkable results were obtained by the addition of fillers. However, nanocomposites showed the best resistance against the applied stresses. In comparison to neat silicone rubber, the stability of the structure and hydrophobic behavior was better for micro-silica, which was further enhanced in the case of nanocomposites. The inclusion of 5% nanosilica showed the best results before and after applying aging conditions.


2021 ◽  
Vol 11 (12) ◽  
pp. 5622
Author(s):  
Nicola De Angelis ◽  
Luca Solimei ◽  
Claudio Pasquale ◽  
Lorenzo Alvito ◽  
Alberto Lagazzo ◽  
...  

Bone augmentation procedures represent a real clinical challenge. One option is the use of titanium meshes. Additive manufacturing techniques can provide custom-made devices in titanium alloy. The purpose of this study was to investigate the material used, which can influence the outcomes of the bone augmentation procedure. Specific test samples were obtained from two different manufacturers with two different shapes: surfaces without perforations and with calibrated perforations. Three-point bending tests were run as well as internal friction tests to verify the Young’s modulus. Test samples were placed in two different buffered solutions and analyzed with optical microscopy. A further SEM analysis was done to observe any microstructural modification. Three-point flexural tests were conducted on 12 specimens. Initial bending was observed at lower applied stresses for the perforated samples (503 MPa) compared to non-perforated ones (900 MPa); the ultimate flexural strength was registered at 513 MPa and 1145 MPa for perforated and non-perforated samples, respectively. Both microscopic analyses (optical and SEM) showed no significant alterations. Conclusions: A normal masticatory load cannot modify the device. Chemical action in the case of exposure does not create macroscopic and microscopic alterations of the surface.


Sign in / Sign up

Export Citation Format

Share Document