High Surface Area Metal Fluorides as Catalysts

Author(s):  
Erhard Kemnitz ◽  
Stephan Rüdiger
ChemTexts ◽  
2020 ◽  
Vol 6 (3) ◽  
Author(s):  
Erhard Kemnitz ◽  
Stefan Mahn ◽  
Thoralf Krahl

Abstract The recently developed fluorolytic sol–gel route to metal fluorides opens a very broad range of both scientific and technical applications of the accessible high surface area metal fluorides, many of which have already been applied or tested. Specific chemical properties such as high Lewis acidity and physical properties such as high surface area, mesoporosity and nanosize as well as the possibility to apply metal fluorides on surfaces via a non-aqueous sol make the fluorolytic synthesis route a very versatile one. The scope of its scientific and technical use and the state of the art are presented.


2009 ◽  
Vol 130 (12) ◽  
pp. 1086-1092 ◽  
Author(s):  
Tomaž Skapin ◽  
Gašper Tavčar ◽  
Andreja Benčan ◽  
Zoran Mazej

ChemInform ◽  
2010 ◽  
Vol 41 (10) ◽  
Author(s):  
Tomaz Skapin ◽  
Gasper Tavcar ◽  
Andreja Bencan ◽  
Zoran Mazej

Author(s):  
Kailun Yang ◽  
Recep Kas ◽  
Wilson A. Smith

<p>This study evaluated the performance of the commonly used strong buffer electrolytes, i.e. phosphate buffers, during CO<sub>2</sub> electroreduction in neutral pH conditions by using in-situ surface enhanced infrared absorption spectroscopy (SEIRAS). Unfortunately, the buffers break down a lot faster than anticipated which has serious implications on many studies in the literature such as selectivity and kinetic analysis of the electrocatalysts. Increasing electrolyte concentration, surprisingly, did not extend the potential window of the phosphate buffers due to dramatic increase in hydrogen evolution reaction. Even high concentration phosphate buffers (1 M) break down within the potentials (-1 V vs RHE) where hydrocarbons are formed on copper electrodes. We have extended the discussion to high surface area electrodes by evaluating electrodes composed of copper nanowires. We would like highlight that it is not possible to cope with high local current densities on these high surface area electrodes by using high buffer capacity solutions and the CO<sub>2</sub> electrocatalysts are needed to be evaluated by casting thin nanoparticle films onto inert substrates as commonly employed in fuel cell reactions and up to now scarcely employed in CO<sub>2</sub> electroreduction. In addition, we underscore that normalization of the electrocatalytic activity to the electrochemical active surface area is not the ultimate solution due to concentration gradient along the catalyst layer.This will “underestimate” the activity of high surface electrocatalyst and the degree of underestimation will depend on the thickness, porosity and morphology of the catalyst layer. </p> <p> </p>


Nanoscale ◽  
2015 ◽  
Vol 7 (25) ◽  
pp. 10974-10981 ◽  
Author(s):  
Xiulin Yang ◽  
Ang-Yu Lu ◽  
Yihan Zhu ◽  
Shixiong Min ◽  
Mohamed Nejib Hedhili ◽  
...  

High surface area FeP nanosheets on a carbon cloth were prepared by gas phase phosphidation of electroplated FeOOH, which exhibit exceptionally high catalytic efficiency and stability for hydrogen generation.


Author(s):  
Sisir Maity ◽  
Dheeraj Kumar Singh ◽  
Divya Bhutani ◽  
Suchitra Prasad ◽  
Umesh V. Waghmare ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document