Degradation of Basement Membrane Components by Vascular Endothelial Cells: Role in Neovascularization

Author(s):  
Bertm Glaser ◽  
Tia Kalebic ◽  
S. Garbisa ◽  
Thomas B. Connor ◽  
Lance A. Liotta
1988 ◽  
Vol 36 (7) ◽  
pp. 763-773 ◽  
Author(s):  
I C Murray ◽  
C P Leblond

When periodontal capillaries of rat incisor tooth were immunostained for four basement membrane components (laminin, collagen IV, fibronectin, heparan sulfate proteoglycan), all four were detected in the secretory organelles of endothelial cells located within 3 mm of the tooth's proximal end, but only the proteoglycan was observed in cells located 4 mm away and beyond (Experiment I). [3H]-Thymidine autoradiography revealed that the endothelial cells located at the tooth's proximal end were young and actively dividing, whereas those located 4 mm or more away were older and generally quiescent (Experiment II). Since immunostaining of a cell's secretory organelles for a given substance indicates production of this substance, the first experiment shows that endothelial cells at the proximal end produce the four basement membrane components. The second experiment discloses that these cells are young. As for the endothelial cells located 4 mm or more beyond the proximal end, the first experiment reveals that they produce only heparan sulfate proteoglycan, while the second shows that they are relatively old. Production of laminin, collagen IV, and fibronectin only by young cells implies that these substances are long-lived and stable components of basement membrane, whereas production of the proteoglycan by both young and old cells implies that it is labile and continually replaced.


Blood ◽  
1997 ◽  
Vol 89 (7) ◽  
pp. 2429-2442 ◽  
Author(s):  
Thomas Bombeli ◽  
Aly Karsan ◽  
Jonathan F. Tait ◽  
John M. Harlan

Abstract Whereas unperturbed endothelial cells provide potent anticoagulant properties, exposure to inflammatory and atherogenic stimuli can rapidly lead to a procoagulant behavior. Because recent studies provide evidence that apoptosis of vascular cells may occur under conditions such as atherosclerosis and inflammation, we investigated whether apoptotic endothelial cells may contribute to the development of a prothrombotic state. In this report, it is shown that both adherent and detached apoptotic human umbilical vein endothelial cells (HUVECs) become procoagulant. Apoptosis was induced by staurosporine, a nonspecific protein kinase inhibitor, or by culture in suspension with serum deprivation. Both methods resulted in similar findings. As assessed by flow cytometric determination of annexin V binding, HUVECs undergoing cell death exhibited typically a more rapid exposure of membrane phosphatidylserine (PS) than DNA fragmentation. Depending on the stage of apoptosis, this redistribution of phospholipids was found to induce an increase of the activity of the intrinsic tenase complex by 25% to 60%. Although apoptotic cells did not show antigenic or functional tissue factor (TF ) activity, when preactivated with lipopolysaccharide, TF procoagulant activity increased by 50% to 70%. At 8 hours after apoptosis induction, antigenic thrombomodulin, heparan sulfates, and TF pathway inhibitor decreased by about 83%, 80%, and 59%, respectively. The functional activity of these components was reduced by about 36%, 52%, and 39%, respectively. Moreover, the presence of apoptotic HUVECs led to a significant increase of thrombin formation in recalcified citrated plasma. In conclusion, apoptotic HUVECs, either adherent or in suspension, become procoagulant by increased expression of PS and the loss of anticoagulant membrane components.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Guangwei Song ◽  
Da Lin ◽  
Licheng Bao ◽  
Qi Jiang ◽  
Yinan Zhang ◽  
...  

Hyperglycemia is one of the main causes of proliferative diabetic retinopathy (PDR) characterized by thickening of the vascular basement membrane. Laminin alpha 1 (LAMA1) is a primary component of laminin, a major protein constituent of the basement membrane. In this study, we investigated the role of LAMA1 in the development of PDR. Retinal choroidal vascular endothelial cells (RF/6A line) were exposed to glucose at different concentrations (5 mM, 15 mM, 25 mM, and 35 mM) and analyzed for cell growth, migration, proliferation, and adhesion. LAMA1 expression was examined 24 and 48 h following glucose treatment using Western blotting, RT-PCR, and immunofluorescence. The results showed that the proliferation, migration, and adhesion of RF/6A cells were increased by high glucose, whereas LAMA1 expression was slightly higher at 15 mM but decreased at 25 mM and 35 mM glucose compared to control. Thus, the changes in the biological behavior of high glucose-exposed retinal vascular endothelial cells correspond to variations in LAMA1 expression, indicating a possibility for LAMA1 involvement in PDR development. Our findings suggest that LAMA1 may play a role in PDR and, thus, may serve as a potential target for DR diagnosis and/or treatment.


Pathobiology ◽  
1989 ◽  
Vol 57 (6) ◽  
pp. 315-323 ◽  
Author(s):  
Helma Rixen ◽  
Charles James Kirkpatrick ◽  
Ursula Schmitz ◽  
Dagmar Ruchatz ◽  
Christian Mittermayer

Sign in / Sign up

Export Citation Format

Share Document