Phytochemical Changes of Fresh-Cut Fruits and Vegetables in Controlled and Modified Atmosphere Packaging

Author(s):  
Jun Yang
2015 ◽  
Vol 46 (1) ◽  
pp. 13-26 ◽  
Author(s):  
M. Oliveira ◽  
M. Abadias ◽  
J. Usall ◽  
R. Torres ◽  
N. Teixidó ◽  
...  

Coatings ◽  
2015 ◽  
Vol 5 (4) ◽  
pp. 931-961 ◽  
Author(s):  
Maria Corbo ◽  
Daniela Campaniello ◽  
Barbara Speranza ◽  
Antonio Bevilacqua ◽  
Milena Sinigaglia

The main topic of this paper is a focus on some non-conventional tools to preserve the microbiological and physico-chemical quality of fresh-cut fruits and vegetables. The quality of fresh-cut foods is the result of a complex equilibrium involving surface microbiota, storage temperature, gas in the headspace and the use of antimicrobials. This paper proposes a short overview of some non-conventional approaches able to preserve the quality of this kind of product, with a special focus on some new ways, as follows: (1) use of edible or antimicrobial-containing coatings (e.g., chitosan-based coatings) on fruits or vegetables; (2) alternative modified atmospheres (e.g., high O2-modified atmosphere packaging (MAP)) or the use of essential oils in the headspace; (3) conditioning solutions with antimicrobials or natural compounds for fruit salad; and (4) biopreservation and use of a probiotic coating.


Author(s):  
Md. Azizul Haque ◽  
Md. Asaduzzaman ◽  
Md. Sultan Mahomud ◽  
Md. Rizvi Alam ◽  
Alin Khaliduzzaman ◽  
...  

AbstractFresh-cut lettuce is a very well-known salad for today's routines because it obliges minimal preparation to minimize the loss of health beneficial vitamins, minerals, antioxidants and other phytochemicals. It is a prodigious challenge to serve its consumers fresh. Quality of freshly processed lettuce under high CO2 modified atmosphere packaging (MAP) has been investigated as a realistic alternative technique for its preservation. Storage under high CO2 atmospheric treatments exhibited a significant impact in microbial development, electrolyte leakage, volatile metabolites and sensory quality of fresh-cut iceberg lettuce. This storage condition (MAP 1: 5 kPa O2 and 20 kPa CO2 balanced by N2 at 7 °C for 6 days) inhibited the growth of mesophilic bacteria and yeasts; delayed the enzymatic browning (cut-edges and intact surface) of fresh-cut iceberg lettuce and overall visual quality was also in acceptance limit. The development of off-odors was perceived in high CO2 MAP as a consequence of volatiles (ethanol and acetaldehyde) accumulation which was persisted at an inexcusable level during 6 days of storage periods.


2015 ◽  
pp. 559-566
Author(s):  
I.C. Guimarães ◽  
E.G.T. Menezes ◽  
P.R.S. Borges ◽  
R. Leal ◽  
K.C. Reis ◽  
...  

2006 ◽  
Vol 69 (10) ◽  
pp. 2524-2528 ◽  
Author(s):  
GILLIAN A. FRANCIS ◽  
DAVID O'BEIRNE

The incidence of Listeria monocytogenes in modified atmosphere packaged fresh-cut fruits and vegetables from chill cabinets of a supermarket in Ireland was investigated over a 2-year period. Overall, 9.58% of fresh-cut produce was contaminated with Listeria spp. Various species of Listeria were isolated from samples, including L. monocytogenes, L. seeligeri, L. innocua, L. welshimeri, and L. ivanovii. No fruit samples contained detectable L. monocytogenes. Overall, a total of 21 L. monocytogenes isolates (2.9% of samples) were recovered from a range of products, including dry coleslaw mix (80% shredded cabbage and 20% shredded carrot), bean sprouts, and leafy vegetables such iceberg, romaine, and radicchio lettuce and mixed salad leaves (curly endive, escarole, and radicchio leaves). Dry coleslaw mix appeared to have the highest incidence of Listeria contamination (20%) compared with other products. Listeria contamination was more frequent (P < 0.05) during the summer and autumn months than during the winter and spring months. The 21 L. monocytogenes isolates were subsequently subtyped by genomic macrorestriction techniques using ApaI with pulsed-field gel electrophoresis (PFGE). PFGE of digested DNA produced bands of 79 to 518 kb. Four PFGE profiles were identified, and approximately 50% of the isolates were associated with profile 1. This study indicates that fresh-cut vegetables packaged under a modified atmosphere can support growth of numerous species of Listeria, including L. monocytogenes.


Sign in / Sign up

Export Citation Format

Share Document