Finite Element Implementation of a Self-Consistent Polycrystal Plasticity Model: Application to a-Uranium

2012 ◽  
pp. 787-796 ◽  
Author(s):  
Marko Knezevic ◽  
Rodney J. McCabe ◽  
Ricardo A. Lebensohn ◽  
Carlos N. Tomé ◽  
Bogdan Mihaila
2018 ◽  
Vol 10 (09) ◽  
pp. 1850095 ◽  
Author(s):  
H. Wang ◽  
D. Tang ◽  
D. Y. Li ◽  
Y. H. Peng ◽  
P. D. Wu

Magnesium alloys exhibit significant inelastic behavior during unloading, especially when twinning and detwinning are involved. It is commonly accepted that noteworthy inelastic behavior will be observed during unloading if twinning occurs during previous loading. However, this phenomenon is not always observed for Mg sheets with strong rolled texture. Therefore, the inelasticity of AZ31B rolled sheets with different rolled textures during cyclic loading-unloading are investigated by elastic viscoplastic self-consistent polycrystal plasticity model. The incorporation of the twinning and detwinning model enables the treatment of detwinning, which plays an important role for inelastic behavior during unloading. The effects of texture, deformation history, and especially twinning and detwinning on the inelastic behaviors are carefully investigated and found to be remarkable. The simulated results are in agreement with the available experimental observations, which reveals that the inelastic behavior for strongly rolled sheets is very different than the extruded bars.


Author(s):  
Ayoub Ayadi ◽  
Kamel Meftah ◽  
Lakhdar Sedira ◽  
Hossam Djahara

Abstract In this paper, the earlier formulation of the eight-node hexahedral SFR8 element is extended in order to analyze material nonlinearities. This element stems from the so-called Space Fiber Rotation (SFR) concept which considers virtual rotations of a nodal fiber within the element that enhances the displacement vector approximation. The resulting mathematical model of the proposed SFR8 element and the classical associative plasticity model are implemented into a Fortran calculation code to account for small strain elastoplastic problems. The performance of this element is assessed by means of a set of nonlinear benchmark problems in which the development of the plastic zone has been investigated. The accuracy of the obtained results is principally evaluated with some reference solutions.


Sign in / Sign up

Export Citation Format

Share Document