tunnel excavation
Recently Published Documents


TOTAL DOCUMENTS

712
(FIVE YEARS 205)

H-INDEX

27
(FIVE YEARS 7)

2022 ◽  
Vol 121 ◽  
pp. 104316
Author(s):  
Jinpeng Zhao ◽  
Zhongsheng Tan ◽  
Xiuying Wang ◽  
Zhenliang Zhou ◽  
Guoliang Li

2021 ◽  
Vol 6 (2) ◽  
pp. 102
Author(s):  
Wakhid Khoiron Nugroho ◽  
I Gde Budi Indrawan, Dr. ◽  
Nugroho Imam Setiawan

Located in the Takalar Regency of South Sulawesi Province, the Pamukkulu Dam is planned to use a tunnel type as its diversion structure. One of the critical parts in the tunnel construction is the stability of portal slopes. This research aimed to estimate the effect of tunnel excavation on the stability of the portal inlet and outlet slopes under static and earthquake loads by using the finite element method. The slope stability analyses were carried out under conditions of prior to and after tunnel excavation. The input parameters used were laboratory test results in the forms of index properties and mechanical properties taken from rock core drilling samples, completed with the rock mass quality parameters based on the Geological Strength Index (GSI) classification. The Mohr-Coulomb failure criterion was used to model strength of the soil, while the Generalized Hoek-Brown failure criterion was used to model strength of the rocks. The results of rock cores analysis using the GSI method showed that the inlet tunnel slope consisted of four types of materials, namely residual soil, fair quality of basalt lava, good quality of basalt lava, and very good quality of basalt lava. Meanwhile, the outlet portal slope consisted of three types of materials, namely residual soil, good quality basalt lava, and very good quality basalt lava. The calculated horizontal seismic coefficient for the pseudo-static slope stability analysis was 0.0375. The analysis results of slope stability in the Y1 inlet section had a critical Strength Reduction Factor (SRF) value of 2.35 in a condition prior to the tunnel excavation and a critical SRF value of 2.34 after the tunnel excavation. The Y2 outlet section had a critical SRF value of 13.27 in a condition before tunnel excavation and a critical SRF value of 5.55 after the tunnel excavation. The earthquake load addition at the Y1 inlet section showed a critical SRF value of 2.05, both before and after the tunnel excavation. The Y2 outlet section showed a critical SRF value of 11.49 before the tunnel excavation and a critical SRF value of 5.54 after the tunnel excavation. The numerical analysis results showed that earthquake load reduced critical SRF values of the slopes. At the Y1 inlet section, the tunnel excavation did not have a significant effect on slope stability. It was demonstrated by an extremely small decrease in a critical SRF value of 0.43% for a condition without an earthquake load and an unchanged critical SRF in a condition with an earthquake load. At the Y2 outlet section, the tunnel excavation had a more significant effect on the slope stability. It was exhibited by the decrease in the critical SRF value of 58.18% in a condition without an earthquake load and a decrease in the critical SRF value of 51.78% in a condition with an addition of an earthquake load. However, the analysis of slope stability for both sections showed that all design slopes were above the required allowable safety factor value.


2021 ◽  
Author(s):  
Jian Lu ◽  
Jingjing Sun ◽  
Yang Shen ◽  
Wei Zheng ◽  
Aijun Yao ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Huiling Zhao ◽  
Fan Zhang ◽  
Xupeng Yao

Tunnel excavation tends to be affected by karst cavities in karst areas. Some cavities that are at low risk of causing safety issues without treatment tend to be ignored in the design and construction of tunnels to reduce costs. It is necessary to gain a better understanding of the effect of such a cavity on the seepage around a tunnel, the deformation of the surrounding rock, and the stress of the tunnel lining. In this paper, a two-dimensional rock-tunnel hydromechanical model with a karst cave was established with FLAC3D finite difference software to simulate the tunnel excavation with the consideration of seepage. Numerical simulations were performed to analyze the deformation of the surrounding rock, the seepage field of the surrounding rock, and the stress of the tunnel lining, and the results were compared for scenarios when the karst cave is at different locations relative to the tunnel. These results can provide a reference for the design and construction of tunnel engineering in rock with karst caves.


2021 ◽  
Vol 9 ◽  
Author(s):  
Guilin Sheng ◽  
Sen Wen ◽  
Fei Wu ◽  
Shixing Liu ◽  
Zhengzheng Wang

It is almost inevitable that when a tunnel is excavated in an urban area, it will pass under an existing bridge. During tunnel excavation, a temporary lining is installed and subsequently removed. However, dismantling temporary lining may affect the stability of a nearby bridge. A numerical model was created and tests were conducted on a large-scale physical model to investigate the effects of dismantling temporary lining on a nearby bridge structure. A novel method of modeling the restraining force at the top of a pier was introduced to make the model more accurate in representing the physical situation. Analysis of the results led to the following conclusions and suggestions. 1. The process of removing temporary lining can have a significant impact on surface settlement and structural deformation of the bridge. 2. The effect of removing the second half temporary lining is greater than that of removing the first half. The key range of the tunnel where this phenomenon is principally observed contains one section of tunnel ahead (i.e., in the direction of tunnel advance) of the bridge span and the two sections to the rear. 3. A 6 m–3 m–6 m mixed dismantling method is recommended for use in the key range, and a rigid cap-connection method is proposed to counteract the considerable effects of dismantling temporary lining.


2021 ◽  
Vol 11 (24) ◽  
pp. 11721
Author(s):  
Jianxiu Wang ◽  
Ansheng Cao ◽  
Zhao Wu ◽  
Zhipeng Sun ◽  
Xiao Lin ◽  
...  

Ultra-shallow-buried and large-span double-arch tunnels face complex risks during construction. The risk sources are hidden, complicated, and diverse. The dynamic risk assessment problem cannot be solved satisfactorily by using the static method as an insufficient amount of research has been conducted. The land part of the Xiamen Haicang double-arch tunnel was selected as the background for the dynamic risk assessment of ultra-shallow-buried and large-span double-arch tunnel construction. The construction process was divided into five stages: pre-construction preparation; ground and surrounding rock reinforcement; pilot tunnel excavation; and the single-and the double-tunnel excavations of the main tunnel. Through consultation with tunnel experts, six first-level and thirty second-level risk evaluation indexes were proposed. The benchmark weight of the dynamic risk assessment index was determined by using the analytic hierarchy process. The weight of the risk evaluation index was revised according to the monitoring data and the construction stage. The fuzzy evaluation matrix of the construction risk membership degree was obtained by using the fuzzy comprehensive assessment method, and the calculation results were analyzed using the subsection assignment method. Control measures were suggested according to the risk assessment results. The risk assessment result of the double tunnel excavation stage of the main tunnel was level II, and the risk level was the highest among the five construction stages. The risk assessment result of the ground and surrounding rock reinforcement stage was level IV, and the risk level was the lowest. The dynamic construction safety risk assessment based on the fuzzy comprehensive assessment method is more timely, accurate, and reasonable than the traditional assessment method. The method can be adopted in similar engineering projects.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Chen Peng ◽  
Yuanming Liu ◽  
Huiyu Chen ◽  
Qiaowei Yuan ◽  
Qingzhi Chen ◽  
...  

Following tunnel excavation, which is influenced by hydraulic fracturing and geological structure, a series of hydrochemical reactions occur in the karst aquifer, which has a significant impact on groundwater hydrology and the earth process. Based on five sets of 38 samples collected in the Tongzi Tunnel in 2020 and 2021, the main geochemical processes and water quality conditions of the karst aquifer system during tunnel construction were revealed by multivariate statistical analysis and graphical methods. The results showed that water-rock action is the main mechanism controlling groundwater chemistry in the study area; HCO3-, Ca2+, and Mg2+ are associated with the widely distributed carbonate rocks in the study area. SO42- is derived from gypsum and sulfate rocks and special strata, which are another important source of Ca2+. Sodium-containing silicates and reverse cation exchange as the causal mechanisms of Na+ whereas F- is derived from fluorite. According to the mineral saturation index calculations, the dissolution and precipitation of minerals such as alum, gypsum, calcite, dolomite, and salt rock have an important influence on the main chemical components in water. The 38 samples were subjected to cluster analysis, and the results could be classified into seven categories. The representative clusters 1, 3, and 5 were selected for principal component analysis. Clusters 1 and 5 of groundwater represent weathering, dissolution, and ion exchange of carbonate and sulfate rocks and are closely related to the lithologic limestone, limestone intercalated with carbonaceous mudstone, carbonaceous mudstone, and coal-measure strata in the aquifer. Cluster 3 is dominated by upper surface river water and characterizes the geochemistry in natural water bodies dominated by the dissolution of carbonate, sulfate, and salt rocks. Finally, groundwater quality is mostly found in Class IV, with NO3- and F- being the main contaminants in the water.


2021 ◽  
Vol 16 (2) ◽  
pp. 203-217
Author(s):  
Nawel Bousbia

Abstract The excavation process of tunnels induces stresses and deformation in the surrounding soil. The method of excavation is one of the major problems related to the safety of the operators and the ground stability during the construction of underground works. So, it is necessary to choose an ideal method to minimize the displacements and stresses induced by tunneling. The main aim of this study is to simulate numerically the effect of different processes of tunneling on ground displacements, the settlements at surface soil and the internal efforts induced in the lining tunnel; in order to select the best process of excavation, which gives us a less effects on displacements generated by tunneling, thus, ensuring the stability and the solidity of the underground constructions. In addition, this study allows us to control and to predict the diverse movements generated by tunneling (displacements, settlements, efforts internes) exclusively for the shallow tunnel nearby to the underground constructions in the urban site. This modeling will be done by employing five different processes for tunnel excavation using the NATM (New Austrian Tunneling Method) method. The first process, the modeling of the excavation tunnel, is done almost in the same way as in reality; the partial face excavation, with seven slices, made by the excavation. The second process, by partial face excavation, is divided into eleven slices, next, we used the partial face excavation by nine slices, and then in thirteen slices. Finally, the dig is made by full-face excavation. The paper contributes to the prediction of the response of the soil environment to tunnel excavation using the NATM method and to minimize the diverse movements generated by tunneling. The appropriately chosen methodology confirms that displacements and subsidence are strongly influenced by the tunneling method. The three-dimensional Finite Elements Method using Plaxis3D program has been applied in the numerical simulation. The study resulted in the recommendation of a process that minimizes the effect of excavation on subsidence and ground displacement for a particular Setiha tunnel.


2021 ◽  
Vol 17 (2) ◽  
pp. 30-33
Author(s):  
Murat Kalender ◽  
Martin Vojtek

Abstract As the modernisation of the cities, railway road construction and modernisation of existing lines are demanded during the past decades more than before. Demand of short travel time is one the reasons that we redesign of existed railway roads and modernisation process. Tunnel construction is one the ways that we can shorten travel time in the existing railway roads. In this study, we introduced one of the commonly used tunnel construction methods, New Austrian Tunnelling Method (NATM), and some of important points of that method regarding tunnel excavation and bearing capacity of excavation support system. Furthermore, we gave some information about some tunnels which shortens the travel time and some tunnel project examples which are constructed with this method. The main purpose of construction of all these tunnels are to shorten the travel time of the existing railway line due to increasing on population and urbanization.


Sign in / Sign up

Export Citation Format

Share Document