Fractional Heat Conduction Equations

Author(s):  
Teodor M. Atanacković ◽  
Stevan Pilipović ◽  
Bogoljub Stanković ◽  
Dušan Zorica
2016 ◽  
Vol 20 (3) ◽  
pp. 785-788 ◽  
Author(s):  
Wei-Hong Zhu ◽  
Shao-Tang Zhang ◽  
Zheng-Biao Li

Hairs of a polar bear are of superior properties such as the excellent thermal protection. The polar bears can perennially live in an extremely cold environment and can maintain body temperature at around 37 ?C. Why do polar bears can resist such cold environment? Its membrane-pore structure plays an important role. In the previous work, we established a 1-D fractional heat conduction equation to reveal the hidden mechanism for the hairs. In this paper, we further discuss solutions and parameters of the equation established and analyze heat conduction in polar bear hairs.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Monika Žecová ◽  
Ján Terpák

The contribution deals with the fractional heat conduction models and their use for determining thermal diffusivity. A brief historical overview of the authors who have dealt with the heat conduction equation is described in the introduction of the paper. The one-dimensional heat conduction models with using integer- and fractional-order derivatives are listed. Analytical and numerical methods of solution of the heat conduction models with using integer- and fractional-order derivatives are described. Individual methods have been implemented in MATLAB and the examples of simulations are listed. The proposal and experimental verification of the methods for determining thermal diffusivity using half-order derivative of temperature by time are listed at the conclusion of the paper.


Symmetry ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 689 ◽  
Author(s):  
Yuriy Povstenko ◽  
Tamara Kyrylych

The time-fractional heat conduction equation follows from the law of conservation of energy and the corresponding time-nonlocal extension of the Fourier law with the “long-tail” power kernel. The time-fractional heat conduction equation with the Caputo derivative is solved for an infinite plane with two external half-infinite slits with the prescribed heat flux across their surfaces. The integral transform technique is used. The solution is obtained in the form of integrals with integrand being the Mittag–Leffler function. A graphical representation of numerical results is given.


Sign in / Sign up

Export Citation Format

Share Document