Introduction to Large-Scale Peer-to-Peer Distributed Systems

2013 ◽  
pp. 19-31
Author(s):  
Fabrice Kordon
Author(s):  
B. Mejías ◽  
P. Van Roy

Distributed systems with a centralized architecture present the well known problems of single point of failure and single point of congestion; therefore, they do not scale. Decentralized systems, especially as peer-to-peer networks, are gaining popularity because they scale well, and do not need a server to work. However, their complexity is higher due to the lack of a single point of control and synchronization, and because consistent decentralized storage is difficult to maintain when data constantly evolves. Self-management is a way of handling this higher complexity. In this paper, the authors present a decentralized system built with a structured overlay network that is self-organized and self-healing, providing a transactional replicated storage for small or large scale systems.


Author(s):  
J. Pourqasem ◽  
S.A. Edalatpanah

Equal peers in peer-to-peer (P2P) networks are the drawbacks of system in term of bandwidth, scalability and efficiency. The super-peer model is based on heterogeneity and different characteristics of peers in P2P networks. The P2P networks and large- scale distributed systems based on P2P networks use the super-peer model to design the query processing mechanism. This chapter first reviews the query processing methods in P2P networks, in which the authors classify theses query processing approaches in Unstructured and Structured mechanisms. Furthermore, the query processing techniques in distributed systems based on P2P networks are discussed. Afterward, authors concentrate on super-peer model to process the query of peers in P2P networks. Authors present the query processing methods in P2P-based distributed systems using the super node. Finally, the chapter provides some examples of each of the presented query processing techniques, and then illustrates the properties of each of them in terms of scalability and performance issues.


2007 ◽  
Vol 41 (2) ◽  
pp. 83-88
Author(s):  
Flavio P. Junqueira ◽  
Vassilis Plachouras ◽  
Fabrizio Silvestri ◽  
Ivana Podnar

2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Federica Paganelli ◽  
David Parlanti

Current trends towards the Future Internet are envisaging the conception of novel services endowed with context-aware and autonomic capabilities to improve end users’ quality of life. The Internet of Things paradigm is expected to contribute towards this ambitious vision by proposing models and mechanisms enabling the creation of networks of “smart things” on a large scale. It is widely recognized that efficient mechanisms for discovering available resources and capabilities are required to realize such vision. The contribution of this work consists in a novel discovery service for the Internet of Things. The proposed solution adopts a peer-to-peer approach for guaranteeing scalability, robustness, and easy maintenance of the overall system. While most existing peer-to-peer discovery services proposed for the IoT support solely exact match queries on a single attribute (i.e., the object identifier), our solution can handle multiattribute and range queries. We defined a layered approach by distinguishing three main aspects: multiattribute indexing, range query support, peer-to-peer routing. We chose to adopt an over-DHT indexing scheme to guarantee ease of design and implementation principles. We report on the implementation of a Proof of Concept in a dangerous goods monitoring scenario, and, finally, we discuss test results for structural properties and query performance evaluation.


2018 ◽  
Vol 7 (2.7) ◽  
pp. 1051
Author(s):  
Gera Jaideep ◽  
Bhanu Prakash Battula

Peer to Peer (P2P) network in the real world is a class of systems that are made up of thousands of nodes in distributed environments. The nodes are decentralized in nature. P2P networks are widely used for sharing resources and information with ease. Gnutella is one of the well known examples for such network. Since these networks spread across the globe with large scale deployment of nodes, adversaries use them as a vehicle to launch DDoS attacks. P2P networks are exploited to make attacks over hosts that provide critical services to large number of clients across the globe. As the attacker does not make a direct attack it is hard to detect such attacks and considered to be high risk threat to Internet based applications. Many techniques came into existence to defeat such attacks. Still, it is an open problem to be addressed as the flooding-based DDoS is difficult to handle as huge number of nodes are compromised to make attack and source address spoofing is employed. In this paper, we proposed a framework to identify and secure P2P communications from a DDoS attacks in distributed environment. Time-to-Live value and distance between source and victim are considered in the proposed framework. A special agent is used to handle information about nodes, their capacity, and bandwidth for efficient trace back. A Simulation study has been made using NS2 and the experimental results reveal the significance of the proposed framework in defending P2P network and target hosts from high risk DDoS attacks.  


2014 ◽  
Vol 26 (6) ◽  
pp. 1316-1331 ◽  
Author(s):  
Gang Chen ◽  
Tianlei Hu ◽  
Dawei Jiang ◽  
Peng Lu ◽  
Kian-Lee Tan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document