Verification of Super-Peer Model for Query Processing in Peer-to-Peer Networks

Author(s):  
J. Pourqasem ◽  
S.A. Edalatpanah

Equal peers in peer-to-peer (P2P) networks are the drawbacks of system in term of bandwidth, scalability and efficiency. The super-peer model is based on heterogeneity and different characteristics of peers in P2P networks. The P2P networks and large- scale distributed systems based on P2P networks use the super-peer model to design the query processing mechanism. This chapter first reviews the query processing methods in P2P networks, in which the authors classify theses query processing approaches in Unstructured and Structured mechanisms. Furthermore, the query processing techniques in distributed systems based on P2P networks are discussed. Afterward, authors concentrate on super-peer model to process the query of peers in P2P networks. Authors present the query processing methods in P2P-based distributed systems using the super node. Finally, the chapter provides some examples of each of the presented query processing techniques, and then illustrates the properties of each of them in terms of scalability and performance issues.

Author(s):  
Lu Liu ◽  
Duncan Russell ◽  
Jie Xu

Peer-to-peer (P2P) networks attract attentions worldwide with their great success in file sharing networks (e.g., Napster, Gnutella, BitTorrent, and Kazaa). In the last decade, numerous studies have been devoted to the problem of resource discovery in P2P networks. Recent research on structured and unstructured P2P systems provides a series of useful solutions to improve the scalability and performance of service discovery in large-scale service-based systems. In this chapter, the authors systematically review recent research studies on P2P search techniques and explore the potential roles and influence of P2P networking in dependable service-based military systems.


2018 ◽  
Vol 7 (2.7) ◽  
pp. 1051
Author(s):  
Gera Jaideep ◽  
Bhanu Prakash Battula

Peer to Peer (P2P) network in the real world is a class of systems that are made up of thousands of nodes in distributed environments. The nodes are decentralized in nature. P2P networks are widely used for sharing resources and information with ease. Gnutella is one of the well known examples for such network. Since these networks spread across the globe with large scale deployment of nodes, adversaries use them as a vehicle to launch DDoS attacks. P2P networks are exploited to make attacks over hosts that provide critical services to large number of clients across the globe. As the attacker does not make a direct attack it is hard to detect such attacks and considered to be high risk threat to Internet based applications. Many techniques came into existence to defeat such attacks. Still, it is an open problem to be addressed as the flooding-based DDoS is difficult to handle as huge number of nodes are compromised to make attack and source address spoofing is employed. In this paper, we proposed a framework to identify and secure P2P communications from a DDoS attacks in distributed environment. Time-to-Live value and distance between source and victim are considered in the proposed framework. A special agent is used to handle information about nodes, their capacity, and bandwidth for efficient trace back. A Simulation study has been made using NS2 and the experimental results reveal the significance of the proposed framework in defending P2P network and target hosts from high risk DDoS attacks.  


Author(s):  
Federico Montesino Pouzols ◽  
Angel Barriga Barros ◽  
Diego R. Lopez ◽  
Santiago Sánchez-Solano

Peer-to-peer (P2P) networks have recently emerged as an attractive solution to enable large-scale content distribution without requiring major infrastructure investments. Recent developments have led to a significant maturity increase of peer-to-peer technologies, which are currently available as tools for performing core tasks in virtual and networked organizations.


Author(s):  
B. Mejías ◽  
P. Van Roy

Distributed systems with a centralized architecture present the well known problems of single point of failure and single point of congestion; therefore, they do not scale. Decentralized systems, especially as peer-to-peer networks, are gaining popularity because they scale well, and do not need a server to work. However, their complexity is higher due to the lack of a single point of control and synchronization, and because consistent decentralized storage is difficult to maintain when data constantly evolves. Self-management is a way of handling this higher complexity. In this paper, the authors present a decentralized system built with a structured overlay network that is self-organized and self-healing, providing a transactional replicated storage for small or large scale systems.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Lixiang Li ◽  
Jürgen Kurths ◽  
Yixian Yang ◽  
Guole Liu

In recent years, the complex network as the frontier of complex system has received more and more attention. Peer-to-peer (P2P) networks with openness, anonymity, and dynamic nature are vulnerable and are easily attacked by peers with malicious behaviors. Building trusted relationships among peers in a large-scale distributed P2P system is a fundamental and challenging research topic. Based on interpersonal relationships among peers of large-scale P2P networks, we present prevention and trust evaluation scheme, called IRTrust. The framework incorporates a strategy of identity authentication and a global trust of peers to improve the ability of resisting the malicious behaviors. It uses the quality of service (QoS), quality of recommendation (QoR), and comprehensive risk factor to evaluate the trustworthiness of a peer, which is applicable for large-scale unstructured P2P networks. The proposed IRTrust can defend against several kinds of malicious attacks, such as simple malicious attacks, collusive attacks, strategic attacks, and sybil attacks. Our simulation results show that the proposed scheme provides greater accuracy and stronger resistance compared with existing global trust schemes. The proposed scheme has potential application in secure P2P network coding.


2007 ◽  
Vol 08 (01) ◽  
pp. 1-28
Author(s):  
KEVIN F. CHEN ◽  
EDWIN H.-M. SHA

We show that universal routing can be achieved with low overhead in distributed networks. The validity of our results rests on a new network called the fat-stack. We show that from a routing perspective the fat-stack is efficient and is suitable for use as a baseline distributed network and as a crucial benchmark architecture for evaluating the performance of specific distributed networks. We show that the fat-stack is efficient by proving it is universal. A requirement for the fat-stack to be universal is that link capacities double up the levels of the network. We use methods developed in the areas of VLSI and processor interconnect for much of our analysis. We then show how to scale the fat-stack from a VLSI graph layout to a large-scale distributed topology and how the network can be an effective benchmark architecture. Our universality proofs show that a fat-stack of area Θ(A) can simulate any competing network of area A with [Formula: see text] overhead independently of wire delay. The universality result implies that the fat-stack of a given size is nearly the best routing network of that size. The fat-stack is also the minimal universal network for an [Formula: see text] overhead in terms of number of links. Actual simulations show that the fat-stack outperforms a mesh-based distributed network of comparable hardware usage. Our work helps explain why some deployed networks function in the way they do in terms of routing. It also provides an exemplary network of proven efficiency and scalability for building new distributed systems.


Author(s):  
Andreea Visan ◽  
Mihai Istin ◽  
Florin Pop ◽  
Valentin Cristea

The state prediction of resources in large scale distributed systems represents an important aspect for resources allocations, systems evaluation, and autonomic control. The paper presents advanced techniques for resources state prediction in Large Scale Distributed Systems, which include techniques based on bio-inspired algorithms like neural network improved with genetic algorithms. The approach adopted in this paper consists of a new fitness function, having prediction error minimization as the main scope. The proposed prediction techniques are based on monitoring data, aggregated in a history database. The experimental scenarios consider the ALICE experiment, active at the CERN institute. Compared with classical predicted algorithms based on average or random methods, the authors obtain an improved prediction error of 73%. This improvement is important for functionalities and performance of resource management systems in large scale distributed systems in the case of remote control ore advance reservation and allocation.


2007 ◽  
Vol 45 (6) ◽  
pp. 100-106 ◽  
Author(s):  
Yun Tang ◽  
Jian-Guang Luo ◽  
Qian Zhang ◽  
Meng Zhang ◽  
Shi-Qiang Yang

Sign in / Sign up

Export Citation Format

Share Document