High-Cycle Fatigue Crack Initiation Site Distribution in A356.2

2013 ◽  
pp. 315-324 ◽  
Author(s):  
B. Zhang ◽  
D. R. Poirier ◽  
W. Chen
Metals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 145
Author(s):  
Yuki Ono ◽  
Halid Can Yıldırım ◽  
Koji Kinoshita ◽  
Alain Nussbaumer

This study aimed to identify the fatigue crack initiation site of high-frequency mechanical impact (HFMI)-treated high-strength steel welded joints subjected to high peak stresses; the impact of HFMI treatment residual stress relaxation being of particular interest. First, the compressive residual stresses induced by HFMI treatment and their changes due to applied high peak stresses were quantified using advanced measurement techniques. Then, several features of crack initiation sites according to levels of applied peak stresses were identified through fracture surface observation of failed specimens. The relaxation behavior was simulated with finite element (FE) analyses incorporating the experimentally characterized residual stress field, load cycles including high peak load, improved weld geometry and non-linear material behavior. With local strain and local mean stress after relaxation, fatigue damage assessments along the surface of the HFMI groove were performed using the Smith–Watson–Topper (SWT) parameter to identify the critical location and compared with actual crack initiation sites. The obtained results demonstrate the shift of the crack initiation most prone position along the surface of the HFMI groove, resulting from a combination of stress concentration and residual stress relaxation effect.


2018 ◽  
Vol 165 ◽  
pp. 14004
Author(s):  
Benoît Bracquart ◽  
Charles Mareau ◽  
Nicolas Saintier ◽  
Franck Morel

In this work, the influence of the geometrical defect size on the high cycle fatigue behavior of polycrystalline aluminium with different grain sizes is investigated, to better understand the role of internal length scales. Two sizes of grains and defect are used: 100 μm and 1000 μm, the grain size being controlled with thermomechanical treatments. Fully reversed stress-controlled fatigue tests are then carried out. According to fatigue test results, surface crack initiation is delayed when the grain size is reduced, while an approximation of the fatigue limit shows that it is not much influenced by the average grain size. The relative defect diameter (compared to the grain size) seems to be the leading parameter influencing fatigue crack initiation from a defect. Finally, Electron BackScattered Diffraction (EBSD) maps are collected for specimens with large grains and small defects. Fatigue crack initiation from a defect is found to be strongly impacted by the crystallographic orientation of the surrounding grain, crack initiation preferably occurring in crystals being favorably oriented for plastic slip.


Sign in / Sign up

Export Citation Format

Share Document