Seismic Reservoir Modeling

2021 ◽  
Author(s):  
Dario Grana ◽  
Tapan Mukerji ◽  
Philippe Doyen
2019 ◽  
Vol 38 (10) ◽  
pp. 786-790
Author(s):  
Yong Keun Hwang ◽  
Helena Zirczy ◽  
Sudhish Bakku

Full-field reservoir models provide key input to annual business plans and reserve booking. They support the long-term field development plan by enabling well target optimization, identification of infill opportunities, water-flood management, and well-surveillance and intervention strategies. It is crucial to constrain the model with all available static and dynamic data to improve its predictive power for confident decision making. Across Shell's global deepwater portfolio, a model-based probabilistic seismic amplitude-variation-with-offset (AVO) inversion methodology is used to constrain reservoir properties as part of a comprehensive quantitative seismic reservoir modeling workflow. Promise, a proprietary probabilistic inversion tool, estimates values of reservoir properties and quantifies their uncertainties through repeated forward modeling and automated quality checking of synthetic against recorded seismic data. During workflow execution, available geologic, petrophysical, and geophysical data are incorporated. As a consequence, the reservoir models are consistent with all relevant subsurface data following their update through inversion. Model-based inversion establishes a direct link between static model properties and elastic impedances. Probabilistic inversion output is an ensemble of posterior static models. The inversion process automatically sorts through the ensemble. It can directly provide low, mid, and high cases of the inverted models that are ready to be used in hydrocarbon volume estimation and multiscenario dynamic modeling for history matching and production forecasting. For successful and efficient delivery of full-field reservoir models with uncertainty assessment using model-based probabilistic AVO inversion, early integration of interdisciplinary subsurface data and cross-business collaboration are key.


Geophysics ◽  
2021 ◽  
pp. 1-43
Author(s):  
Dario Grana ◽  
Leandro de Figueiredo

Seismic reservoir characterization is a subfield of geophysics that combines seismic and rock physics modeling with mathematical inverse theory to predict the reservoir variables from the measured seismic data. An open-source comprehensive modeling library that includes the main concepts and tools is still missing. We present a Python library named SeReMpy with the state of the art of seismic reservoir modeling for reservoir properties characterization using seismic and rock physics models and Bayesian inverse theory. The most innovative component of the library is the Bayesian seismic and rock physics inversion to predict the spatial distribution of petrophysical and elastic properties from seismic data. The inversion algorithms include Bayesian analytical solutions of the linear-Gaussian inverse problem and Markov chain Monte Carlo (McMC) numerical methods for non-linear problems. The library includes four modules: geostatistics, rock physics, facies, and inversion, as well as several scripts with illustrative examples and applications. We present a detailed description of the scripts that illustrate the use of the functions of module and describe how to apply the codes to practical inversion problems using synthetic and real data. The applications include a rock physics model for the prediction of elastic properties and facies using well log data, a geostatistical simulation of continuous and discrete properties using well logs, a geostatistical interpolation and simulation of two-dimensional maps of temperature, an elastic inversion of partial stacked seismograms with Bayesian linearized AVO inversion, a rock physics inversion of partial stacked seismograms with McMC methods, and a two-dimensional seismic inversion.


Author(s):  
N. Blet ◽  
Vincent Ayel ◽  
Yves Bertin ◽  
Cyril Romestant ◽  
Vincent Platel

2011 ◽  
Author(s):  
Giorgio Rocco Cavanna ◽  
Ernesto Caselgrandi ◽  
Elisa Corti ◽  
Alessandro Amato del Monte ◽  
Massimo Fervari ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document