SeReMpy: Seismic Reservoir Modeling Python library

Geophysics ◽  
2021 ◽  
pp. 1-43
Author(s):  
Dario Grana ◽  
Leandro de Figueiredo

Seismic reservoir characterization is a subfield of geophysics that combines seismic and rock physics modeling with mathematical inverse theory to predict the reservoir variables from the measured seismic data. An open-source comprehensive modeling library that includes the main concepts and tools is still missing. We present a Python library named SeReMpy with the state of the art of seismic reservoir modeling for reservoir properties characterization using seismic and rock physics models and Bayesian inverse theory. The most innovative component of the library is the Bayesian seismic and rock physics inversion to predict the spatial distribution of petrophysical and elastic properties from seismic data. The inversion algorithms include Bayesian analytical solutions of the linear-Gaussian inverse problem and Markov chain Monte Carlo (McMC) numerical methods for non-linear problems. The library includes four modules: geostatistics, rock physics, facies, and inversion, as well as several scripts with illustrative examples and applications. We present a detailed description of the scripts that illustrate the use of the functions of module and describe how to apply the codes to practical inversion problems using synthetic and real data. The applications include a rock physics model for the prediction of elastic properties and facies using well log data, a geostatistical simulation of continuous and discrete properties using well logs, a geostatistical interpolation and simulation of two-dimensional maps of temperature, an elastic inversion of partial stacked seismograms with Bayesian linearized AVO inversion, a rock physics inversion of partial stacked seismograms with McMC methods, and a two-dimensional seismic inversion.

2021 ◽  
Author(s):  
Pavlo Kuzmenko ◽  
Rustem Valiakhmetov ◽  
Francesco Gerecitano ◽  
Viktor Maliar ◽  
Grigori Kashuba ◽  
...  

Abstract The seismic data have historically been utilized to perform structural interpretation of the geological subsurface. Modern approaches of Quantitative Interpretation are intended to extract geologically valuable information from the seismic data. This work demonstrates how rock physics enables optimal prediction of reservoir properties from seismic derived attributes. Using a seismic-driven approach with incorporated prior geological knowledge into a probabilistic subsurface model allowed capturing uncertainty and quantifying the risk for targeting new wells in the unexplored areas. Elastic properties estimated from the acquired seismic data are influenced by the depositional environment, fluid content, and local geological trends. By applying the rock physics model, we were able to predict the elastic properties of a potential lithology away from the well control points in the subsurface whether or not it has been penetrated. Seismic amplitude variation with incident angle (AVO) and azimuth (AVAZ) jointly with rock-derived petrophysical interpretations were used for stochastical modeling to capture the reservoir distribution over the deep Visean formation. The seismic inversion was calibrated by available well log data and by traditional structural interpretation. Seismic elastic inversion results in a deep Lower Carboniferous target in the central part of the DDB are described. The fluid has minimal effect on the density and Vp. Well logs with cross-dipole acoustics are used together with wide-azimuth seismic data, processed with amplitude control. It is determined that seismic anisotropy increases in carbonate deposits. The result covers a set of lithoclasses and related probabilities: clay minerals, tight sandstones, porous sandstones, and carbonates. We analyzed the influence of maximum angles determination for elastic inversion that varied from 32.5 to 38.5 degrees. The greatest influence of the far angles selection is on the density. AI does not change significantly. Probably the 38,5 degrees provides a superior response above the carbonates. It does not seem to damage the overall AVA behavior, which result in a good density outcome, as higher angles of incidence are included. It gives a better tie to the wells for the high density layers over the interval of interest. Sand probability cube must always considered in the interpretation of the lithological classification that in many cases may be misleading (i.e. when sand and shale probabilities are very close to each other, because of small changes in elastic parameters). The authors provide an integrated holistic approach for quantitative interpretation, subsurface modeling, uncertainty evaluation, and characterization of reservoir distribution using pre-existing well logs and recently acquired seismic data. This paper underpins the previous efforts and encourages the work yet to be fulfilled on this subject. We will describe how quantitative interpretation was used for describing the reservoir, highlight values and uncertainties, and point a way forward for further improvement of the process for effective subsurface modeling.


Geophysics ◽  
2016 ◽  
Vol 81 (5) ◽  
pp. C177-C191 ◽  
Author(s):  
Yunyue Li ◽  
Biondo Biondi ◽  
Robert Clapp ◽  
Dave Nichols

Seismic anisotropy plays an important role in structural imaging and lithologic interpretation. However, anisotropic model building is a challenging underdetermined inverse problem. It is well-understood that single component pressure wave seismic data recorded on the upper surface are insufficient to resolve a unique solution for velocity and anisotropy parameters. To overcome the limitations of seismic data, we have developed an integrated model building scheme based on Bayesian inference to consider seismic data, geologic information, and rock-physics knowledge simultaneously. We have performed the prestack seismic inversion using wave-equation migration velocity analysis (WEMVA) for vertical transverse isotropic (VTI) models. This image-space method enabled automatic geologic interpretation. We have integrated the geologic information as spatial model correlations, applied on each parameter individually. We integrate the rock-physics information as lithologic model correlations, bringing additional information, so that the parameters weakly constrained by seismic are updated as well as the strongly constrained parameters. The constraints provided by the additional information help the inversion converge faster, mitigate the ambiguities among the parameters, and yield VTI models that were consistent with the underlying geologic and lithologic assumptions. We have developed the theoretical framework for the proposed integrated WEMVA for VTI models and determined the added information contained in the regularization terms, especially the rock-physics constraints.


2021 ◽  
Vol 40 (10) ◽  
pp. 751-758
Author(s):  
Fabien Allo ◽  
Jean-Philippe Coulon ◽  
Jean-Luc Formento ◽  
Romain Reboul ◽  
Laure Capar ◽  
...  

Deep neural networks (DNNs) have the potential to streamline the integration of seismic data for reservoir characterization by providing estimates of rock properties that are directly interpretable by geologists and reservoir engineers instead of elastic attributes like most standard seismic inversion methods. However, they have yet to be applied widely in the energy industry because training DNNs requires a large amount of labeled data that is rarely available. Training set augmentation, routinely used in other scientific fields such as image recognition, can address this issue and open the door to DNNs for geophysical applications. Although this approach has been explored in the past, creating realistic synthetic well and seismic data representative of the variable geology of a reservoir remains challenging. Recently introduced theory-guided techniques can help achieve this goal. A key step in these hybrid techniques is the use of theoretical rock-physics models to derive elastic pseudologs from variations of existing petrophysical logs. Rock-physics theories are already commonly relied on to generalize and extrapolate the relationship between rock and elastic properties. Therefore, they are a useful tool to generate a large catalog of alternative pseudologs representing realistic geologic variations away from the existing well locations. While not directly driven by rock physics, neural networks trained on such synthetic catalogs extract the intrinsic rock-physics relationships and are therefore capable of directly estimating rock properties from seismic amplitudes. Neural networks trained on purely synthetic data are applied to a set of 2D poststack seismic lines to characterize a geothermal reservoir located in the Dogger Formation northeast of Paris, France. The goal of the study is to determine the extent of porous and permeable layers encountered at existing geothermal wells and ultimately guide the location and design of future geothermal wells in the area.


Geophysics ◽  
2018 ◽  
Vol 83 (3) ◽  
pp. MR187-MR198 ◽  
Author(s):  
Yi Shen ◽  
Jack Dvorkin ◽  
Yunyue Li

Our goal is to accurately estimate attenuation from seismic data using model regularization in the seismic inversion workflow. One way to achieve this goal is by finding an analytical relation linking [Formula: see text] to [Formula: see text]. We derive an approximate closed-form solution relating [Formula: see text] to [Formula: see text] using rock-physics modeling. This relation is tested on well data from a clean clastic gas reservoir, of which the [Formula: see text] values are computed from the log data. Next, we create a 2D synthetic gas-reservoir section populated with [Formula: see text] and [Formula: see text] and generate respective synthetic seismograms. Now, the goal is to invert this synthetic seismic section for [Formula: see text]. If we use standard seismic inversion based solely on seismic data, the inverted attenuation model has low resolution and incorrect positioning, and it is distorted. However, adding our relation between velocity and attenuation, we obtain an attenuation model very close to the original section. This method is tested on a 2D field seismic data set from Gulf of Mexico. The resulting [Formula: see text] model matches the geologic shape of an absorption body interpreted from the seismic section. Using this [Formula: see text] model in seismic migration, we make the seismic events below the high-absorption layer clearly visible, with improved frequency content and coherency of the events.


2019 ◽  
Vol 38 (10) ◽  
pp. 762-769
Author(s):  
Patrick Connolly

Reflectivities of elastic properties can be expressed as a sum of the reflectivities of P-wave velocity, S-wave velocity, and density, as can the amplitude-variation-with-offset (AVO) parameters, intercept, gradient, and curvature. This common format allows elastic property reflectivities to be expressed as a sum of AVO parameters. Most AVO studies are conducted using a two-term approximation, so it is helpful to reduce the three-term expressions for elastic reflectivities to two by assuming a relationship between P-wave velocity and density. Reduced to two AVO components, elastic property reflectivities can be represented as vectors on intercept-gradient crossplots. Normalizing the lengths of the vectors allows them to serve as basis vectors such that the position of any point in intercept-gradient space can be inferred directly from changes in elastic properties. This provides a direct link between properties commonly used in rock physics and attributes that can be measured from seismic data. The theory is best exploited by constructing new seismic data sets from combinations of intercept and gradient data at various projection angles. Elastic property reflectivity theory can be transferred to the impedance domain to aid in the analysis of well data to help inform the choice of projection angles. Because of the effects of gradient measurement errors, seismic projection angles are unlikely to be the same as theoretical angles or angles derived from well-log analysis, so seismic data will need to be scanned through a range of angles to find the optimum.


2017 ◽  
Vol 25 (03) ◽  
pp. 1750022
Author(s):  
Xiuwei Yang ◽  
Peimin Zhu

Acoustic impedance (AI) from seismic inversion can indicate rock properties and can be used, when combined with rock physics, to predict reservoir parameters, such as porosity. Solutions to seismic inversion problem are almost nonunique due to the limited bandwidth of seismic data. Additional constraints from well log data and geology are needed to arrive at a reasonable solution. In this paper, sedimentary facies is used to reduce the uncertainty in inversion and rock physics modeling; the results not only agree with seismic data, but also conform to geology. A reservoir prediction method, which incorporates seismic data, well logs, rock physics and sedimentary facies, is proposed. AI was first derived by constrained sparse spike inversion (CSSI) using a sedimentary facies dependent low-frequency model, and then was transformed to reservoir parameters by sequential simulation, statistical rock physics and [Formula: see text]-model. Two numerical experiments using synthetic model and real data indicated that the sedimentary facies information may help to obtain a more reasonable prediction.


2013 ◽  
Vol 1 (2) ◽  
pp. SB15-SB25
Author(s):  
Gorka Garcia Leiceaga ◽  
Mark Norton ◽  
Joël Le Calvez

Seismic-derived elastic properties may be used to help evaluate hydrocarbon production capacity in unconventional plays such as tight or shale formations. By combining prestack seismic and well log data, inversion-based volumes of elastic properties may be produced. Moreover, a petrophysical evaluation and rock physics analysis may be carried out, thus leading to a spatial distribution of hydrocarbon production capacity. The result obtained is corroborated with the available well information, confirming our ability to accurately predict hydrocarbon production capacity in unconventional plays.


Geophysics ◽  
2010 ◽  
Vol 75 (5) ◽  
pp. 75A165-75A176 ◽  
Author(s):  
Miguel Bosch ◽  
Tapan Mukerji ◽  
Ezequiel F. Gonzalez

There are various approaches for quantitative estimation of reservoir properties from seismic inversion. A general Bayesian formulation for the inverse problem can be implemented in two different work flows. In the sequential approach, first seismic data are inverted, deterministically or stochastically, into elastic properties; then rock-physics models transform those elastic properties to the reservoir property of interest. The joint or simultaneous work flow accounts for the elastic parameters and the reservoir properties, often in a Bayesian formulation, guaranteeing consistency between the elastic and reservoir properties. Rock physics plays the important role of linking elastic parameters such as impedances and velocities to reservoir properties of interest such as lithologies, porosity, and pore fluids. Geostatistical methods help add constraints of spatial correlation, conditioning to different kinds of data and incorporating subseismic scales of heterogeneities.


Geophysics ◽  
2010 ◽  
Vol 75 (3) ◽  
pp. O21-O37 ◽  
Author(s):  
Dario Grana ◽  
Ernesto Della Rossa

A joint estimation of petrophysical properties is proposed that combines statistical rock physics and Bayesian seismic inversion. Because elastic attributes are correlated with petrophysical variables (effective porosity, clay content, and water saturation) and this physical link is associated with uncertainties, the petrophysical-properties estimation from seismic data can be seen as a Bayesian inversion problem. The purpose of this work was to develop a strategy for estimating the probability distributions of petrophysical parameters and litho-fluid classes from seismics. Estimation of reservoir properties and the associated uncertainty was performed in three steps: linearized seismic inversion to estimate the probabilities of elastic parameters, probabilistic upscaling to include the scale-changes effect, and petrophysical inversion to estimate the probabilities of petrophysical variables andlitho-fluid classes. Rock-physics equations provide the linkbetween reservoir properties and velocities, and linearized seismic modeling connects velocities and density to seismic amplitude. A full Bayesian approach was adopted to propagate uncertainty from seismics to petrophysics in an integrated framework that takes into account different sources of uncertainty: heterogeneity of the real data, approximation of physical models, measurement errors, and scale changes. The method has been tested, as a feasibility step, on real well data and synthetic seismic data to show reliable propagation of the uncertainty through the three different steps and to compare two statistical approaches: parametric and nonparametric. Application to a real reservoir study (including data from two wells and partially stacked seismic volumes) has provided as a main result the probability densities of petrophysical properties and litho-fluid classes. It demonstrated the applicability of the proposed inversion method.


Sign in / Sign up

Export Citation Format

Share Document