Contrasting Life History Traits in Monocarpic Versus Polycarpic Plants from a Molecular‐Evolutionary Point of View

2019 ◽  
pp. 479-504
Author(s):  
Christiane Kiefer ◽  
Sara Bergonzi ◽  
Luise Brand ◽  
Stefan Wötzel ◽  
Marcus A. Koch
Author(s):  
Bruna Patrícia Dutra Costa ◽  
Layana Aquino Moura ◽  
Sabrina Alana Gomes Pinto ◽  
Monica Gomes Lima-Maximino ◽  
Caio Maximino

The industry is increasingly relying on fish for toxicity assessment. However, current guidelines for toxicity assessment focus on teratogenicity and mortality. From an ecotoxicological point of view, however, these endpoints may not reflect the “full picture” of possible deleterious effects that can nonetheless result in decreased fitness and/or inability to adapt to a changing environment, affecting whole populations. Therefore, assessing sublethal effects add relevant data covering different aspects of toxicity at different levels of analysis. Impacts of toxicants on neurobehavioral function have the potential to affect many different life-history traits, and are easier to assess in the laboratory than in the wild. We propose that carefully-controlled laboratory experiments on different behavioral domains – including anxiety, aggression, and exploration – can increase our understanding of the ecotoxicological impacts of contaminants, since these domains are related to traits such as defense, sociality, and reproduction, directly impacting life-history traits. The effects of selected contaminants on these tests are reviewed, focusing on larval and adult zebrafish, showing that these behavioral domains are highly sensitive to small concentrations of these substances. These strategies suggest a way forward on ecotoxicological research using fish.


Fishes ◽  
2020 ◽  
Vol 5 (3) ◽  
pp. 23
Author(s):  
Bruna Patricia Dutra Costa ◽  
Layana Aquino Moura ◽  
Sabrina Alana Gomes Pinto ◽  
Monica Lima-Maximino ◽  
Caio Maximino

The industry is increasingly relying on fish for toxicity assessment. However, current guidelines for toxicity assessment focus on teratogenicity and mortality. From an ecotoxicological point of view, however, these endpoints may not reflect the “full picture” of possible deleterious effects that can nonetheless result in decreased fitness and/or inability to adapt to a changing environment, affecting whole populations. Therefore, assessing sublethal effects add relevant data covering different aspects of toxicity at different levels of analysis. The impacts of toxicants on neurobehavioral function have the potential to affect many different life-history traits, and are easier to assess in the laboratory than in the wild. We propose that carefully-controlled laboratory experiments on different behavioral domains—including anxiety, aggression, and exploration—can increase our understanding of the ecotoxicological impacts of contaminants, since these domains are related to traits such as defense, sociality, and reproduction, directly impacting life-history traits. The effects of selected contaminants on these tests are reviewed, focusing on larval and adult zebrafish, showing that these behavioral domains are highly sensitive to small concentrations of these substances. These strategies suggest a way forward on ecotoxicological research using fish.


Author(s):  
Bruna Patrícia Dutra Costa ◽  
Layana Aquino Moura ◽  
Sabrina Alana Gomes Pinto ◽  
Monica Gomes Lima-Maximino ◽  
Caio Maximino

The industry is increasingly relying on fish for toxicity assessment. However, current guidelines for toxicity assessment focus on teratogenicity and mortality. From an ecotoxicological point of view, however, these endpoints are not sensitive enough, as they are not able to detect sub-lethal or non-teratogenic effects that can nonetheless result in decreased fitness and/or inability to adapt to a changing environment, affecting whole populations. Impacts of toxicants on neurobehavioral function have the potential to affect many different life-history traits, and are easier to assess in the laboratory than in the wild. We propose that carefully-controlled laboratory experiments on different behavioral domains – including anxiety, aggression, and exploration – can increase our understanding of the ecotoxicological impacts of contaminants, since these domains are related to traits such as defense, sociality, and reproduction, directly impacting life-history traits. We review the effects of selected contaminants on these tests, focusing on larval and adult zebrafish, showing that these behavioral domains are highly sensitive to small concentrations of these substances. These strategies suggest a way forward on ecotoxicological research using fish.


Parasitology ◽  
2002 ◽  
Vol 124 (7) ◽  
pp. 65-81 ◽  
Author(s):  
A. S. GRUTTER

Cleaning behaviour has generally been viewed from the cleaner or client's point of view. Few studies, however, have examined cleaning behaviour from the parasites' perspective, yet they are the equally-important third players in such associations. All three players are likely to have had their evolution affected by the association. As cleaner organisms are important predators of parasites, cleaners are likely to have an important effect on their prey. Little, however, is known of how parasites are affected by cleaning associations and the strategies that parasites use in response to cleaners. I examine here what parasites are involved in cleaning interactions, the effect cleaners have on parasites, the potential counter-adaptations that parasites have evolved against the predatory activities of cleaner organisms, the potential influence of cleaners on the life history traits of parasites, and other factors affected by cleaners. I have found that a wide range of ectoparasites from diverse habitats have been reported to interact with a wide range of cleaner organisms. Some of the life history traits of parasites are consistent with the idea that they are in response to cleaner predation. It is clear, however, that although many cleaning systems exist their ecological role is largely unexplored. This has likely been hindered by our lack of information on the parasites involved in cleaning interactions.


2020 ◽  
Vol 650 ◽  
pp. 7-18 ◽  
Author(s):  
HW Fennie ◽  
S Sponaugle ◽  
EA Daly ◽  
RD Brodeur

Predation is a major source of mortality in the early life stages of fishes and a driving force in shaping fish populations. Theoretical, modeling, and laboratory studies have generated hypotheses that larval fish size, age, growth rate, and development rate affect their susceptibility to predation. Empirical data on predator selection in the wild are challenging to obtain, and most selective mortality studies must repeatedly sample populations of survivors to indirectly examine survivorship. While valuable on a population scale, these approaches can obscure selection by particular predators. In May 2018, along the coast of Washington, USA, we simultaneously collected juvenile quillback rockfish Sebastes maliger from both the environment and the stomachs of juvenile coho salmon Oncorhynchus kisutch. We used otolith microstructure analysis to examine whether juvenile coho salmon were age-, size-, and/or growth-selective predators of juvenile quillback rockfish. Our results indicate that juvenile rockfish consumed by salmon were significantly smaller, slower growing at capture, and younger than surviving (unconsumed) juvenile rockfish, providing direct evidence that juvenile coho salmon are selective predators on juvenile quillback rockfish. These differences in early life history traits between consumed and surviving rockfish are related to timing of parturition and the environmental conditions larval rockfish experienced, suggesting that maternal effects may substantially influence survival at this stage. Our results demonstrate that variability in timing of parturition and sea surface temperature leads to tradeoffs in early life history traits between growth in the larval stage and survival when encountering predators in the pelagic juvenile stage.


2020 ◽  
Vol 27 (4) ◽  
pp. 195-200
Author(s):  
Ufuk Bülbül ◽  
Halime Koç ◽  
Yasemin Odabaş ◽  
Ali İhsan Eroğlu ◽  
Muammer Kurnaz ◽  
...  

Age structure of the eastern spadefoot toad, Pelobates syriacus from the Kızılırmak Delta (Turkey) were assessed using phalangeal skeletochronology. Snout-vent length (SVL) ranged from 42.05 to 86.63 mm in males and 34.03 to 53.27 mm in females. Age of adults ranged from 2 to 8 years in males and 3 to 5 years in females. For both sexes, SVL was significantly correlated with age. Males and females of the toads reached maturity at 2 years of age.


Sign in / Sign up

Export Citation Format

Share Document