neurobehavioral function
Recently Published Documents


TOTAL DOCUMENTS

178
(FIVE YEARS 42)

H-INDEX

32
(FIVE YEARS 3)

2021 ◽  
pp. 096032712110588
Author(s):  
Zhang Bao ◽  
Yin Jing

Bis(2-ethylhexyl)-2,3,4,5-tetrabromophthalate (TBPH) is one of the new brominated flame retardants with adverse neurobehavioral potential. These flame retardants are often added to household furnishings where children would come into contact with them. This study explores whether oral exposure to TBPH for 28 days would impair neurobehavioral function in mice and the role of curcumin (CUR) in this process. CUR is a natural antioxidant and is thought to be of use in the treatment of neurological toxicity due to its neuroprotective effects. Learning and memory of mice exposed to TBPH was investigated using the Morris water maze. Levels of malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione (GSH) were determined to assess oxidative damage. Western blot was used to detect the expression of glucose-regulated protein 78-kDa (GRP78), PKR-like ER kinase (PERK), and C/EBP homologous protein (CHOP) in the hippocampus. End-point effects were evaluated through observing post-synaptic density protein-95 (PSD-95), brain-derived neurotrophic factor (BDNF), and phosphorylated cAMP response element binding protein (p-CREB). Although TBPH exposure alone does not impair learning and memory, oxidative stress markers and endoplasmic reticulum stress–associated proteins were adversely affected in exposed mice. TBPH could significantly decrease the levels of BDNF, p-CREB, and PSD-95 in the hippocampus, and these TBPH-induced neurotoxic effects were attenuated by CUR. These findings provide further understanding of the neurotoxic effects of TBPH and the protective effect of CUR on TBPH exposure.


Author(s):  
Ui-Jin Kim ◽  
Myeongjin Hong ◽  
Yoon-Hyeong Choi

Pyrethroid compounds are widely used in household insecticides and agricultural pesticides. Recent studies, however, report that pyrethroid exposures affect neurobehavioral function in animals and may be associated with adverse neurocognitive development in children. This study aimed to examine the association between pyrethroid exposure and cognitive dysfunction in older adults using a well-defined general population. We analyzed data from 336 individuals, aged 60–84 years, who participated in the National Health and Nutrition Examination Survey 2001–2002. We used urinary 3-phenoxybenzoic acid (3-PBA) concentration as a biomarker of pyrethroid exposures and assessed cognitive function with the digit–symbol coding test. The geometric means (±geometric standard errors) of creatinine-uncorrected and corrected urinary 3-PBA were 0.30 (±0.87) μg/L and 0.36 (±0.89) μg/g. After adjusting for sociodemographic factors, higher 3-PBA concentrations (> vs. ≤0.30 μg/g creatinine (median)) were associated with lower scores of cognitive function (−3.83 95% confidence interval: −7.11, −0.54). Significance was persistent after additionally adjusting for physical activity and smoking pack-year (−3.76 95% CI: −7.16, −0.36) and further adjusting for BMI and presence of hypertension and diabetes (−3.82 95% CI: −6.92, −0.71). Our findings suggest that pyrethroid exposure is associated with cognitive dysfunction in older adults.


2021 ◽  
Vol 23 (3) ◽  
pp. 420-436
Author(s):  
Hyuk Sung Kwon ◽  
Ye Eun Kim ◽  
Hyun-Hee Park ◽  
Jeong-Woo Son ◽  
Hojin Choi ◽  
...  

Background and Purpose Previous studies have revealed the diverse neuroprotective effects of GV1001. In this study, we investigated the effects of GV1001 on focal cerebral ischemia-reperfusion injury (IRI) in rats and oxygen-glucose deprivation/reoxygenation (OGD/R)-induced injury in neural stem cells (NSCs) and cortical neurons. Methods Focal cerebral IRI was induced by transient middle cerebral artery occlusion (MCAO). Brain diffusion-weighted imaging (DWI) was performed 2 hours after occlusion, and a total of 37 rats were treated by reperfusion with GV1001 or saline 2 hours after occlusion. Fluid-attenuated inversion recovery (FLAIR) magnetic resonance imaging, immunohistochemistry, and neurobehavioral function analyses were performed. Additionally, OGD/R-injured NSCs and cortical neurons were treated with different GV1001 concentrations. Cell viability, proliferation, migration, and oxidative stress were determined by diverse molecular analyses. Results In the stroke model, GV1001 protected neural cells against IRI. The most effective dose of GV1001 was 60 μM/kg. The infarct volume on FLAIR 48 hours after MCAO compared to lesion volume on DWI showed a significantly smaller ratio in the GV1001-treated group. GV1001-treated rats exhibited better behavioral functions than the saline-treated rats. Treatment with GV1001 increased the viability, proliferation, and migration of the OGD/R-injured NSCs. Free radicals were significantly restored by treatment with GV1001. These neuroprotective effects of GV1001 have also been demonstrated in OGD/R-injured cortical neurons. Conclusions The results suggest that GV1001 has neuroprotective effects against IRI in NSCs, cortical neurons, and the rat brain. These effects are mediated through the induction of cellular proliferation, mitochondrial stabilization, and anti-apoptotic, anti-aging, and antioxidant effects.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Xiongjie Fu ◽  
Guoyang Zhou ◽  
Xinyan Wu ◽  
Chaoran Xu ◽  
Hang Zhou ◽  
...  

Abstract Background White matter injury (WMI) is a major neuropathological event associated with intracerebral hemorrhage (ICH). P2X purinoreceptor 4 (P2X4R) is a member of the P2X purine receptor family, which plays a crucial role in regulating WMI and neuroinflammation in central nervous system (CNS) diseases. Our study investigated the role of P2X4R in the WMI and the inflammatory response in mice, as well as the possible mechanism of action after ICH. Methods ICH was induced in mice via collagenase injection. Mice were treated with 5-BDBD and ANA-12 to inhibit P2X4R and tropomyosin-related kinase receptor B (TrkB), respectively. Immunostaining and quantitative polymerase chain reaction (qPCR) were performed to detect microglial phenotypes after the inhibition of P2X4R. Western blots (WB) and immunostaining were used to examine WMI and the underlying molecular mechanisms. Cylinder, corner turn, wire hanging, and forelimb placement tests were conducted to evaluate neurobehavioral function. Results After ICH, the protein levels of P2X4R were upregulated, especially on day 7 after ICH, and were mainly located in the microglia. The inhibition of P2X4R via 5-BDBD promoted neurofunctional recovery after ICH as well as the transformation of the pro-inflammatory microglia induced by ICH into an anti-inflammatory phenotype, and attenuated ICH-induced WMI. Furthermore, we found that TrkB blockage can reverse the protective effects of WMI as well as neuroprotection after 5-BDBD treatment. This result indicates that P2X4R plays a crucial role in regulating WMI and neuroinflammation and that P2X4R inhibition may benefit patients with ICH. Conclusions Our results demonstrated that P2X4R contributes to WMI by polarizing microglia into a pro-inflammatory phenotype after ICH. Furthermore, the inhibition of P2X4R promoted pro-inflammatory microglia polarization into an anti-inflammatory phenotype, enhanced brain-derived neurotrophic factor (BDNF) production, and through the BDNF/TrkB pathway, attenuated WMI and improved neurological function. Therefore, the regulation of P2X4R activation may be beneficial for the reducing of ICH-induced brain injury.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Chu Zhang ◽  
Qian Guan ◽  
Hao Shi ◽  
Lingsheng Cao ◽  
Jing Liu ◽  
...  

Abstract Background The dual inhibitors of receptor interacting protein kinase-1 and -3 (RIP1 and RIP3) play an important role in cell death processes and inflammatory responses. White matter injury (WMI), a leading cause of neurodevelopmental disabilities in preterm infants, which is characterized by extensive myelination disturbances and demyelination. Neuroinflammation, leads to the loss and differentiation-inhibition of oligodendrocyte precursor cells (OPCs), represents a major barrier to myelin repair. Whether the novel RIP1/RIP3 dual inhibitor ZJU-37 can promote transplanted OPCs derived from human neural stem cells (hOPCs) survival, differentiation and myelination remains unclear. In this study, we investigated the effect of ZJU-37 on myelination and neurobehavioral function in a neonatal rat WMI model induced by hypoxia and ischemia. Methods In vivo, P3 rat pups were subjected to right common carotid artery ligation and hypoxia, and then treated with ZJU-37 or/and hOPCs, then OPCs apoptosis, myelination, glial cell and NLRP3 inflammasome activation together with cognitive outcome were evaluated at 12 weeks after transplantation. In vitro, the effect of ZJU-37 on NLRP3 inflammasome activation in astrocytes induced by oxygen–glucose deprivation (OGD) were examined by western blot and immunofluorescence. The effect of ZJU-37 on OPCs apoptosis induced by the conditioned medium from OGD-injured astrocytes (OGD-astrocyte-CM) was analyzed by flow cytometry and immunofluorescence. Results ZJU-37 combined with hOPCs more effectively decreased OPC apoptosis, promoted myelination in the corpus callosum and improved behavioral function compared to ZJU-37 or hOPCs treatment. In addition, the activation of glial cells and NLRP3 inflammasome was reduced by ZJU-37 or/and hOPCs treatment in the neonatal rat WMI model. In vitro, it was also confirmed that ZJU-37 can suppress NLRP3 inflammasome activation in astrocytes induced by OGD. Not only that, the OGD-astrocyte-CM treated with ZJU-37 obviously attenuated OPC apoptosis and dysdifferentiation caused by the OGD-astrocyte-CM. Conclusions The novel RIP1/RIP3 dual inhibitor ZJU-37 may promote OPC survival, differentiation and myelination by inhibiting NLRP3 inflammasome activation in a neonatal rat model of WMI with hOPC graft.


2021 ◽  
Vol 11 (8) ◽  
pp. 1003
Author(s):  
Jacques Taillard ◽  
Claude Gronfier ◽  
Stéphanie Bioulac ◽  
Pierre Philip ◽  
Patricia Sagaspe

In the context of geriatric research, a growing body of evidence links normal age-related changes in sleep with many adverse health outcomes, especially a decline in cognition in older adults. The most important sleep alterations that continue to worsen after 60 years involve sleep timing, (especially early wake time, phase advance), sleep maintenance (continuity of sleep interrupted by numerous awakenings) and reduced amount of sigma activity (during non-rapid eye movement (NREM) sleep) associated with modifications of sleep spindle characteristics (density, amplitude, frequency) and spindle–Slow Wave coupling. After 60 years, there is a very clear gender-dependent deterioration in sleep. Even if there are degradations of sleep after 60 years, daytime wake level and especially daytime sleepiness is not modified with age. On the other hand, under sleep deprivation condition, older adults show smaller cognitive impairments than younger adults, suggesting an age-related lower vulnerability to extended wakefulness. These sleep and cognitive age-related modifications would be due to a reduced homeostatic drive and consequently a reduced sleep need, an attenuation of circadian drive (reduction of sleep forbidden zone in late afternoon and wake forbidden zone in early morning), a modification of the interaction of the circadian and homeostatic processes and/or an alteration of subcortical structures involved in generation of circadian and homeostatic drive, or connections to the cerebral cortex with age. The modifications and interactions of these two processes with age are still uncertain, and still require further investigation. The understanding of the respective contribution of circadian and homeostatic processes in the regulation of neurobehavioral function with aging present a challenge for improving health, management of cognitive decline and potential early chronobiological or sleep-wake interventions.


2021 ◽  
Vol 13 ◽  
Author(s):  
Myoung-Gwi Ryou ◽  
Xiaoan Chen ◽  
Ming Cai ◽  
Hong Wang ◽  
Marianna E. Jung ◽  
...  

In mouse models of Alzheimer's disease (AD), normobaric intermittent hypoxia training (IHT) can preserve neurobehavioral function when applied before deficits develop, but IHT's effectiveness after onset of amyloid-β (Aβ) accumulation is unclear. This study tested the hypothesis that IHT improves learning-memory behavior, diminishes Aβ accumulation in cerebral cortex and hippocampus, and enhances cerebrocortical contents of the neuroprotective trophic factors erythropoietin and brain-derived neurotrophic factor (BDNF) in mice manifesting AD traits. Twelve-month-old female 3xTg-AD mice were assigned to untreated 3xTg-AD (n = 6), AD+IHT (n = 6), and AD+sham-IHT (n = 6) groups; 8 untreated wild-type (WT) mice also were studied. AD+IHT mice alternately breathed 10% O2 for 6 min and room air for 4 min, 10 cycles/day for 21 days; AD+sham-IHT mice breathed room air. Spatial learning-memory was assessed by Morris water maze. Cerebrocortical and hippocampal Aβ40 and Aβ42 contents were determined by ELISA, and cerebrocortical erythropoietin and BDNF were analyzed by immunoblotting and ELISA. The significance of time (12 vs. 12 months + 21 days) and treatment (IHT vs. sham-IHT) was evaluated by two-factor ANOVA. The change in swimming distance to find the water maze platform after 21 d IHT (−1.6 ± 1.8 m) differed from that after sham-IHT (+5.8 ± 2.6 m). Cerebrocortical and hippocampal Aβ42 contents were greater in 3xTg-AD than WT mice, but neither time nor treatment significantly affected Aβ40 or Aβ42 contents in the 3xTg-AD mice. Cerebrocortical erythropoietin and BDNF contents increased appreciably after IHT as compared to untreated 3xTg-AD and AD+sham-IHT mice. In conclusion, moderate, normobaric IHT prevented spatial learning-memory decline and restored cerebrocortical erythropoietin and BDNF contents despite ongoing Aβ accumulation in 3xTg-AD mice.


2021 ◽  
pp. 1-27
Author(s):  
Xiaopeng Ji ◽  
Charlene W. Compher ◽  
Sharon Y. Irving ◽  
Jinyoung Kim ◽  
David F. Dinges ◽  
...  

Abstract Objective: To examine associations between serum micronutrients and neurobehavioral function and the mediating role of sleep quality in early adolescents. Design: In this cross-sectional study, peripheral blood samples were analyzed for iron and zinc levels. The Pittsburgh Sleep Quality Index and Penn Computerized Neurocognitive Battery were used to assess sleep quality and neurobehavioral function, respectively. The generalized linear regressions (bootstrap) were performed to estimate the associations. Setting: Jintan, China Participants: 226 adolescents (106 females) from the Jintan Child Cohort study. Results: Adolescents with low iron (< 75 ug/dl) (OR=1.29, p=0.04) and low zinc (< 70 ug/dl) (OR=1.58, p<0.001) were associated with increased odds for poor sleep quality. Adolescents with low iron and zinc were associated with fast (Iron: β=−1353.71, p=0.002, zinc: β=−2262.01, p=0.02) but less-accurate (Iron: β=−0.97, p=0.04; zinc: β=−1.76, p=0.04) performance on nonverbal reasoning task and poor sleep quality partially mediated the associations between low iron/zinc and nonverbal reasoning (p<0.05). Additionally, low iron was associated with a slower reaction on spatial processing task (β=276.94, p=0.04), and low zinc was associated with fast (β=−1781.83, p=0.03) but error-prone performance (β=−1.79, p=0.04) on spatial processing ability and slower reaction speed (β=12.82, p=0.03) on the attention task. We observed similar trends using a cutoff point of 75 ug/dl for low serum zinc, except for the association with attention task speed (p>0.05). Conclusion: Iron and zinc deficiencies may possibly be associated with poor sleep and neurobehavioral function among early adolescents. Poor sleep may partially mediate the relationship between micronutrients and neurobehavioral function.


Sign in / Sign up

Export Citation Format

Share Document