Natural Dye-Sensitized Solar Cells - Strategies and Measures

Author(s):  
N. Prabavathy ◽  
R. Balasundaraprabhu ◽  
Dhayalan Velauthapillai
2018 ◽  
Vol 1 (2) ◽  
pp. 301-305 ◽  
Author(s):  
Maxwell T. Robinson ◽  
Marie E. Armbruster ◽  
Avi Gargye ◽  
David E. Cliffel ◽  
G. Kane Jennings

2021 ◽  
Author(s):  
Indriana Kartini ◽  
Adhi Dwi Hatmanto

This article will discuss natural dyes’ role, from colouring the cotton fabrics with some functionality to harvesting sunlight in the dye-sensitized solar cells. Natural dye colourants are identical to the low light- and wash-fastness. Therefore, an approach to improving the colourant’s physical properties is necessary. Colouring steps employing silica nanosol and chitosan will be presented. The first part will be these multifunctional natural dye coatings on cotton fabrics. Then, functionality such as hydrophobic surfaces natural dyed cotton fabrics will be discussed. Natural dyes are also potential for electronic application, such as solar cells. So, the second part will present natural dyes as the photosensitizers for solar cells. The dyes are adsorbed on a semiconductor oxide surface, such as TiO2 as the photoanode. Electrochemical study to explore natural dyes’ potential as sensitizer will be discussed, for example, natural dyes for Batik. Ideas in improving solar cell efficiency will be discussed by altering the photoanode’s morphology. The ideas to couple the natural dyes with an organic–inorganic hybrid of perovskite and carbon dots are then envisaged.


2016 ◽  
Vol 139 (2) ◽  
Author(s):  
Kambiz Hosseinpanahi ◽  
Mohammad Hossein Abbaspour-Fard ◽  
Javad Feizy ◽  
Mahmood Reza Golzarian

Natural dye extract of the saffron petal, purified by solid-phase extraction (SPE) technique, has been studied as a novel sensitizing dye to fabricate TiO2 nanoparticles-based dye-sensitized solar cells (DSSC). The extract was characterized using ultraviolet–visible (UV–Vis) and Fourier transform infrared (FTIR) spectroscopies to confirm the presence of anthocyanins in saffron petals. The typical current–voltage and the incident photon to current efficiency (IPCE) curves were also provided for the fabricated cell. The saffron petal extract exhibited an open-circuit voltage (Voc) of 0.397 V, short circuit current density (Jsc) of 2.32 mA/cm2, fill factor (FF) of 0.71, and conversion efficiency of 0.66%, which are fairly good in comparison with the other similar natural dye-sensitized solar cells. These are mainly due to the improved charge transfer between the dye extract of saffron petal and the TiO2 anode surface. Considering these results, it can be concluded that the use of saffron petal dye as a sensitizer in DSSC is a promising method for providing clean energy from performance, environmental friendliness, and cost points of view.


Optik ◽  
2021 ◽  
Vol 227 ◽  
pp. 166053
Author(s):  
Prabavathy N. ◽  
Balasundaraprabhu R. ◽  
Arne S. Kristoffersen ◽  
Balaji G. ◽  
Prasanna S. ◽  
...  

2019 ◽  
Vol 32 (2) ◽  
pp. 342-348
Author(s):  
M. Rekha ◽  
M. Kowsalya

Titanium dioxide nanoparticles have been synthesized by a novel modified sol-gel for the fabrication of natural dye sensitized solar cells. The natural photo sensitizer extracted from Cordia sebestena flower was mixed with the precursor solution. The flower dye has put the effort of a surfactant which has resulted colourized TiO2 instead of white TiO2. Whencompared to the conventional sol-gel method, this modified process has enhanced the properties of TiO2 like, morphology, uniformity in dye absorption. It has reduced the agglomeration of TiO2 and dye aggregation significantly. The optimized molecular geometry of sebestenoid D, the major pigment of Cordia sebestena and HOMO-LUMO plot are found using density functional theory. The TiO2 nanoparticles were subjected to structural, optical, spectral and morphological studies which showed improved properties in modified sol-gel process. Ecofriendly and low-cost natural dye sensitized solar cells (DSSC) were fabricated using conventional and pre-dye treated TiO2 sensitized by Cordia sebestena flower extract. The I-V studies showed the solar light photon to electron conversion efficiencies of 0.87 and 1.28 % for sol-gel and modified sol-gel methods, respectively. There has been an enhancement in efficiency by 47 % in modified sol-gel method which is very much promising in terms of efficiency for natural dye sensitized solar cells.


Sign in / Sign up

Export Citation Format

Share Document