Role of Fog Computing Platform in Analytics of Internet of Things‐ Issues, Challenges and Opportunities

Author(s):  
Mamoon Rashid ◽  
Umer Iqbal Wani
Author(s):  
Hua-Jun Hong ◽  
Pei-Hsuan Tsai ◽  
An-Chieh Cheng ◽  
Md Yusuf Sarwar Uddin ◽  
Nalini Venkatasubramanian ◽  
...  

Author(s):  
Tanweer Alam

In next-generation computing, the role of cloud, internet and smart devices will be capacious. Nowadays we all are familiar with the word smart. This word is used a number of times in our daily life. The Internet of Things (IoT) will produce remarkable different kinds of information from different resources. It can store big data in the cloud. The fog computing acts as an interface between cloud and IoT. The extension of fog in this framework works on physical things under IoT. The IoT devices are called fog nodes, they can have accessed anywhere within the range of the network. The blockchain is a novel approach to record the transactions in a sequence securely. Developing a new blockchains based middleware framework in the architecture of the Internet of Things is one of the critical issues of wireless networking where resolving such an issue would result in constant growth in the use and popularity of IoT. The proposed research creates a framework for providing the middleware framework in the internet of smart devices network for the internet of things using blockchains technology. Our main contribution links a new study that integrates blockchains to the Internet of things and provides communication security to the internet of smart devices.


Author(s):  
Dharmendra Trikamlal Patel

In recent years, internet of things (IoT) has expanded due to very good internet infrastructure everywhere. IoT has the ability to create a network of physical things that use embedded technologies in order to sense, converse, cooperate, and team up with other things. IoT-based applications require scalability and fault tolerance, which is very difficult to implement in centralized systems and computing environments. Distributed computing is an ideal solution to implement IoT-based applications. The chapter starts with the basics of distributed computing where difference with centralized computing, challenges, and types of distributed computing applications are discussed. The chapter deals with the role of distributed computing for IoT based on advantages, issues, and related IoT-based applications. The chapter discusses the recent topic of distributed computing—FOG computing—in connection with IoT-based applications. At last, the chapter addresses research and interest trends about distributed computing and IoT.


2019 ◽  
Vol 11 (7) ◽  
pp. 158 ◽  
Author(s):  
Simon Vanneste ◽  
Jens de Hoog ◽  
Thomas Huybrechts ◽  
Stig Bosmans ◽  
Reinout Eyckerman ◽  
...  

The increase of Internet of Things devices and the rise of more computationally intense applications presents challenges for future Internet of Things architectures. We envision a future in which edge, fog, and cloud devices work together to execute future applications. Because the entire application cannot run on smaller edge or fog devices, we will need to split the application into smaller application components. These application components will send event messages to each other to create a single application from multiple application components. The execution location of the application components can be optimized to minimize the resource consumption. In this paper, we describe the Distributed Uniform Stream (DUST) framework that creates an abstraction between the application components and the middleware which is required to make the execution location transparent to the application component. We describe a real-world application that uses the DUST framework for platform transparency. Next to the DUST framework, we also describe the distributed DUST Coordinator, which will optimize the resource consumption by moving the application components to a different execution location. The coordinators will use an adapted version of the Contract Net Protocol to find local minima in resource consumption.


2021 ◽  
Author(s):  
Tanweer Alam

In the age of next-generation computer, the role of the cloud, the internet and smart devices will become stronger. These days we all know the word smart well. This word is often used in our daily lives. The Internet of Things (IoT) will generate a variety of information from a variety of resources. It can store big data in the cloud. Fog computing acts as a signal between cloud and IoT. Fog extensions in this framework apply to material under IoT. IoT devices are called Fog nodes, which can be accessed anywhere within the network range. A blockchain is a novel way of recording in a secure sequence. Creating a new framework in the development of Internet of Things is one of the critical problems of wireless communication where solving such a problem can lead to continued growth in the use and popularity of IoT. Proposed research creates a framework for providing a framework for middleware on the internet of smart devices network for the internet of things using blockchains technology. Our great offering connects new research that integrates blockchains into the Internet of Things and provides secure Internet connection for smart devices. Blockchain (BC) Internet of Things (IoT) is a new technology that works with low-level, distributed, public and real-time leaders to maintain transactions between IoT sites. A blockchain is a series of blocks, each block being linked to its previous blocks. All blocks have cryptographic hash code, previous block hash, and its data. Transactions in BC are the basic components used to transfer data between IoT nodes. IoT nodes are a variety of portable but smart devices with embedded sensors, actuators, systems and the ability to communicate with other IoT nodes. The role of BC in IoT is to provide a process for processing secure data records using IoT nodes. BC is a protected technology that can be used publicly and openly. IoT requires this type of technology to allow secure communication between IoT nodes in different environments. Events in BC can be tracked and monitored by anyone who is certified to communicate within IoT.


2021 ◽  
Author(s):  
Tanweer Alam

<p>In the age of next-generation computer, the role of the cloud, the internet and smart devices will become stronger. These days we all know the word smart well. This word is often used in our daily lives. The Internet of Things (IoT) will generate a variety of information from a variety of resources. It can store big data in the cloud. Fog computing acts as a signal between cloud and IoT. Fog extensions in this framework apply to material under IoT. IoT devices are called Fog nodes, which can be accessed anywhere within the network range. A blockchain is a novel way of recording in a secure sequence. Creating a new framework in the development of Internet of Things is one of the critical problems of wireless communication where solving such a problem can lead to continued growth in the use and popularity of IoT. Proposed research creates a framework for providing a framework for middleware on the internet of smart devices network for the internet of things using blockchains technology. Our great offering connects new research that integrates blockchains into the Internet of Things and provides secure Internet connection for smart devices. Blockchain (BC) Internet of Things (IoT) is a new technology that works with low-level, distributed, public and real-time leaders to maintain transactions between IoT sites. A blockchain is a series of blocks, each block being linked to its previous blocks. All blocks have cryptographic hash code, previous block hash, and its data. Transactions in BC are the basic components used to transfer data between IoT nodes. IoT nodes are a variety of portable but smart devices with embedded sensors, actuators, systems and the ability to communicate with other IoT nodes. The role of BC in IoT is to provide a process for processing secure data records using IoT nodes. BC is a protected technology that can be used publicly and openly. IoT requires this type of technology to allow secure communication between IoT nodes in different environments. Events in BC can be tracked and monitored by anyone who is certified to communicate within IoT.</p>


Author(s):  
Nisha Angeline C. V. ◽  
Raja Lavanya

Fog computing extends the cloud computing paradigm to the edge of the network, thus enabling a new breed of applications and services. Defining characteristics of the Fog are 1) low latency and location awareness, 2) widespread geographical distribution, 3) mobility, 4) very large number of nodes, 5) predominant role of wireless access, 6) strong presence of streaming and real time applications, and 7) heterogeneity. In this chapter, the authors argue that the above characteristics make the Fog the appropriate platform for a number of critical internet of things (IoT) services and applications, namely connected vehicle, smart grid, smart cities, and in general, wireless sensors and actuators networks (WSANs).


2018 ◽  
Vol 7 (3.29) ◽  
pp. 263
Author(s):  
Sk. Wasim Akram ◽  
Dr P. Rajesh ◽  
SK. Shama

In the future, various information and things will be connected to the network. People can now live more convenient and comfortable life where the things and information coordinated together. A world where things are connected to network is referred as IOT (Internet of Things). A huge amount of incomplete data is generated by IOT need to process and responded to very short time. This pose challenge of dealing with big data from many geometrically distributed data sources which are to be managed and processed. To achieve this objective, cloud computing is a treated as one of the popular choice due to its scalability, storage, computational and other capabilities. However current cloud models are not intended to handle the essentials of IOT– volume, variety, and velocity of data. Moreover, as the physical distance between cloud and user increases, transmission latency increases with it, increasing response time and stressing of the user. In addition to that, the processing speed in this environment is largely dependent on the performance of user device. The viable solution to these problems is identified as Edge Computing. The Edge Computing platform works by allowing some application processing to be performed by a small edge server position between the cloud and user, and crucially in a location physically closed to the user. This paper comprehensively presents various research trends that are available in Edge, Fog computing along with a comparison is made among Cloud. Particularly the architecture, characteristics, key technologies, potential applications, security issues and challenges of Edge, Fog and Cloud Computing are discussed and summarized.  


Sign in / Sign up

Export Citation Format

Share Document