Point Groups and Space Groups

Keyword(s):  
Author(s):  
Kannan M. Krishnan

Crystalline materials have a periodic arrangement of atoms, exhibit long range order, and are described in terms of 14 Bravais lattices, 7 crystal systems, 32 point groups, and 230 space groups, as tabulated in the International Tables for Crystallography. We introduce the nomenclature to describe various features of crystalline materials, and the practically useful concepts of interplanar spacing and zonal equations for interpreting electron diffraction patterns. A crystal is also described as the sum of a lattice and a basis. Practical materials harbor point, line, and planar defects, and their identification and enumeration are important in characterization, for defects significantly affect materials properties. The reciprocal lattice, with a fixed and well-defined relationship to the real lattice from which it is derived, is the key to understanding diffraction. Diffraction is described by Bragg law in real space, and the equivalent Ewald sphere construction and the Laue condition in reciprocal space. Crystallography and diffraction are closely related, as diffraction provides the best methodology to reveal the structure of crystals. The observations of quasi-crystalline materials with five-fold rotational symmetry, inconsistent with lattice translations, has resulted in redefining a crystalline material as “any solid having an essentially discrete diffraction pattern”


Author(s):  
A. M. Glazer

In order to explain what crystals are and how their structures are described, we need to understand the role of symmetry, for this lies at the heart of crystallography. ‘Symmetry’ explains the different types of symmetry: rotational, mirror or reflection, point, chiral, and translation. There are thirty-two point groups and seven crystal systems, according to which symmetries are present. These are triclinic, monoclinic, orthorhombic, tetragonal, trigonal, hexagonal, and cubic. Miller indices, lattices, crystal structure, and space groups are described in more detail. Any normal crystal belongs to one of the 230 space group types. Crystallographers generally use the International Notation system to denote these space groups.


2010 ◽  
Vol 152-153 ◽  
pp. 1156-1161 ◽  
Author(s):  
Wen Suo Ma ◽  
Bin Qian Yang ◽  
Xiao Zhong Ren

3D braided group theory is dissertated. The analysis procedure is described from the existing braided geometry structure to the braided space group; 3D braided geometrical structures are finally described by means of group theory. Some of novel 3D braided structures are deduced from the braided space groups. By describing the 3D braided materials with braided space point and braided space groups, the braided space groups are not always the same as symmetry groups of crystallographic because novel lattices can be produced and the reflection operation cannot exist in braided space point groups. Braided point and space groups are theoretical basis for deriving the novel braided geometry structure.


2014 ◽  
Vol 70 (a1) ◽  
pp. C40-C40
Author(s):  
Michiyoshi Tanaka

The history of the Convergent Beam Electron Diffraction (CBED) is shortly introduced. Symmetry determinations[1] of crystals or the point groups and space groups of 3, 4, 5 and 6 dimensional crystals, and crystal structure analysis including the determination of charge density distribution and potential distribution of a crystal are briefly reviewed.[2] Then, the large angle CBED (LACBED) technique is described.[3] Applications of the LACBED technique to the determinations of the Burgers vector of a dislocation, the shift vector at a stacking fault, the precise orientation difference of a twin domain and the strain of an advanced multi-layer material are reviewed.


Author(s):  
D. B. Litvin

The 440 ferroelectric space groups, viz the Heesch-Shubnikov (magnetic) space groups, which are symmetry groups of ferroelectric electric-dipole arrangements in crystals, are derived and tabulated. By considering automorphisms induced by the automorphisms of the discrete space-time group, we show that although ferroelectric, ferromagnetic and ferrocurrent point groups all number 31, the number of ferroelectric space groups differs from 275, which is that of both ferromagnetic and ferrocurrent space groups.


Author(s):  
Gregory S. Chirikjian ◽  
Kushan Ratnayake ◽  
Sajdeh Sajjadi

AbstractPoint groups consist of rotations, reflections, and roto-reflections and are foundational in crystallography. Symmorphic space groups are those that can be decomposed as a semi-direct product of pure translations and pure point subgroups. In contrast, Bieberbach groups consist of pure translations, screws, and glides. These “torsion-free” space groups are rarely mentioned as being a special class outside of the mathematics literature. Every space group can be thought of as lying along a spectrum with the symmorphic case at one extreme and Bieberbach space groups at the other. The remaining nonsymmorphic space groups lie somewhere in between. Many of these can be decomposed into semi-direct products of Bieberbach subgroups and point transformations. In particular, we show that those 3D Sohncke space groups most populated by macromolecular crystals obey such decompositions. We tabulate these decompositions for those Sohncke groups that admit such decompositions. This has implications to the study of packing arrangements in macromolecular crystals. We also observe that every Sohncke group can be written as a product of Bieberbach and symmorphic subgroups, and this has implications for new nomenclature for space groups.


Sign in / Sign up

Export Citation Format

Share Document