periodic arrangement
Recently Published Documents


TOTAL DOCUMENTS

98
(FIVE YEARS 27)

H-INDEX

13
(FIVE YEARS 1)

Author(s):  
Ai Yanagihara ◽  
Katsumi KISHINO

Abstract In this study, the monolithic integration of LEDs with different emission colors (wavelengths of 543, 573, and 597 nm) with the directional radiation profiles was demonstrated. InGaN/GaN nanocolumn arrays ordered in a triangular lattice were prepared side by side, changing the diameter of the n-GaN nanocolumn (Dn-GaN). The periodic arrangement of the nanocolumns led to the photonic crystal (PC) effect. The photonic band edge wavelength (λB) and the InGaN bandgap were controlled by the Dn-GaN. By controlling λB closely at the bandgap wavelength, the PC effect provided directional beam radiation from the LEDs with radiation angles of approximately ±30°


2021 ◽  
Vol 53 (6) ◽  
pp. 210605
Author(s):  
Iwan Prasetiyo ◽  
Gradi Desendra ◽  
Khoerul Anwar ◽  
Mohammad Kemal Agusta

Several studies have been devoted to increasing the attenuation performance of the Helmholtz resonator (HR). One way is by periodic coupling of HRs in a ducting system. In this study, we propose a different approach, where a membrane (or a thin flexible structure in general) is added to the air cavity of a periodic HR array in order to further enhance the attenuation by utilizing the resonance effect of the membrane. It is expected that three attenuation mechanisms will exist in the system that can enhance the overall attenuation, i.e. the resonance mechanism of the HR, the Bragg reflection of the periodic system, and the resonance mechanism of the membrane or thin flexible structure. This study found that the proposed system yields two adjacent attenuation peaks, related to the HR and the membrane respectively. Moreover, extension of the attenuation bandwidth was also observed as a result of the periodic arrangement of HRs. With the same HR parameters, the peak attenuation by the membrane is tunable by changing its material properties. However, such a system does not always produce a wider attenuation bandwidth; the resonance bandwidths of both mechanisms must overlap.


2021 ◽  
Vol 263 (5) ◽  
pp. 1194-1205
Author(s):  
Adriano Mitsuo Goto ◽  
Victor Gustavo Ramos Costa Dos Santos ◽  
José Maria Campos Dos Santos

The expansion and the micro-perforated chamber mufflers are acoustic silencers designed to attenuate the sound propagation at duct systems. These silencers can show interesting phononic crystals behavior when set periodically. The concept of phononic crystals still is an emerging topic in vibration and sound control. The periodic arrangement of acoustic silencers can provide a significant enhancement of the sound absorption due to the "wave filtering" property where the wave cannot propagate at certain frequency ranges, called stopbands or bandgaps. However, these properties may be affected by defects, like the break of the periodicity due to manufacturing errors. For the present work, the influence of some defects on the acoustic efficiency is investigated numerically for expansion and micro-perforated chamber mufflers. A direct and efficient approach is used to obtain the transfer and dynamic stiffness matrices. Simulated examples are used to calculate the forced response, transmission loss, and dispersion diagram, which are verified by other methods.


2021 ◽  
Vol 54 (4) ◽  
Author(s):  
Tsunetomo Yamada

The atomic structure of quasicrystals (QCs) is described as a section of a higher-dimensional structure that consists of a periodic arrangement of occupation domains (ODs). Determination of the shape of ODs and their partitioning is crucial in the structural analysis of QCs. However, owing to the complicated shape of ODs, building the initial structure model requires a great deal of time and effort. Thus, a computer program for building structure models of QCs is needed. Presented here is a Python3 package for structure modelling of icosahedral QCs.


2021 ◽  
Author(s):  
Aymen Bouali ◽  
Montacer Dridi ◽  
Florent Colas ◽  
Chantal Compère

Abstract In this work we investigate the effect of the symmetry in a 2-D arrays of gold nanoparticle on the sensitivity to the refractive index change. We demonstrate a generalized result that an asymmetric periodic arrangement of metallic nanoparticle leads to a higher sensitivity than a regular square of nanoparticle. Further decreasing the symmetry of the system by using asymmetric nanoparticle (nanorods, triangle) rather than symmetric nanoparticle (nanocylinder) will further improve this sensitivity. Finally, we suggest that such asymmetric nanostructure could operate as a SERS and LSPR plasmon based sensor by changing the polarization of the incident light.


2021 ◽  
Author(s):  
Ali Baseri ◽  
Alireza Keshavarz

Abstract This study investigates the propagating of electromagnetic waves through a one-dimensional quasi-photonic crystal with the transfer matrix method. Our proposed structure consists of two types of double negative metamaterials, organized according to the Thue-Morse sequence law. The results show that changing the structure via quasi-periodic arrangements makes the outcome more varied than applying the absolute periodic arrangement. Given that, our desirable results of interest are more conveniently achieved. The structure completely stops-both s and p polarization at the lower frequencies, for all incidence angles. It also partially stops s and p polarization, at higher frequencies. Moreover, the achieved transmittance spectrum contains several omnidirectional band-gaps, which remain invariant with changes in the incidence angle. The oscillation of the transmittance values also becomes more intense at higher orders of the period number. This study could pave the way for optimizing of photonic crystal circuits, splitters, switches, etc.


Author(s):  
Kannan M. Krishnan

Crystalline materials have a periodic arrangement of atoms, exhibit long range order, and are described in terms of 14 Bravais lattices, 7 crystal systems, 32 point groups, and 230 space groups, as tabulated in the International Tables for Crystallography. We introduce the nomenclature to describe various features of crystalline materials, and the practically useful concepts of interplanar spacing and zonal equations for interpreting electron diffraction patterns. A crystal is also described as the sum of a lattice and a basis. Practical materials harbor point, line, and planar defects, and their identification and enumeration are important in characterization, for defects significantly affect materials properties. The reciprocal lattice, with a fixed and well-defined relationship to the real lattice from which it is derived, is the key to understanding diffraction. Diffraction is described by Bragg law in real space, and the equivalent Ewald sphere construction and the Laue condition in reciprocal space. Crystallography and diffraction are closely related, as diffraction provides the best methodology to reveal the structure of crystals. The observations of quasi-crystalline materials with five-fold rotational symmetry, inconsistent with lattice translations, has resulted in redefining a crystalline material as “any solid having an essentially discrete diffraction pattern”


ACTA IMEKO ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 23
Author(s):  
Simone Tiberti ◽  
Gabriele Milani

This paper presents an automated procedure that enables the creation of a finite element mesh directly from the image file representing the rasterized sketch of a generic masonry element. This procedure goes under the name “pixel strategy” if a 2D finite element mesh is needed, where the elements are planar and rectangular; conversely, its extension in the 3D case is named “voxel strategy”, and there the resulting finite elements are solid bricks. The finite element meshes so obtained are then used for extracting homogenized in-plane failure surfaces for historical masonry cells, which display a non-periodic arrangement of units. These surfaces are consistent with the expected results, and their shapes suggest that the behavior of such type of masonry may range between orthotropic (if bed mortar joints are clearly noticeable) and quasi-isotropic (if some units spread over two or more masonry layers).


2021 ◽  
Author(s):  
Zhaojie Chai ◽  
Anastasios V. Tzingonunis ◽  
George Lykotrafitis

ABSTRACTRecent work has established that axons have a periodic skeleton structure comprising of azimuthal actin rings connected via longitudinal spectrin tetramer filaments. This structure endows the axon with structural integrity and mechanical stability. Additionally, voltage-gated sodium channels follow the periodicity of the active-spectrin arrangement, spaced ∼190 nm segments apart. The impact of this periodic sodium channel arrangement on the generation and propagation of action potentials is unknown. To address this question, we simulated an action potential using the Hodgkin-Huxley formalism in a cylindrical compartment but instead of using a homogeneous distribution of voltage-gated sodium channels in the membrane, we applied the experimentally determined periodic arrangement. We found that the periodic distribution of voltage-gated sodium channels does not significantly affect the generation or propagation of action potentials, but instead leads to high-density sodium channel nanodomains. This work provides a foundation for future studies investigating the role of the voltage-gated sodium channel periodic arrangement in the axon.


Sign in / Sign up

Export Citation Format

Share Document